Shijun Wu , Zhiheng Chen , Shuo Wang , Jian Zhang , Canjun Yang
{"title":"深海取样器综述:原理、应用、性能和趋势","authors":"Shijun Wu , Zhiheng Chen , Shuo Wang , Jian Zhang , Canjun Yang","doi":"10.1016/j.dsr.2024.104401","DOIUrl":null,"url":null,"abstract":"<div><p>Research on deep seawater is of great importance to marine chemistry, biology, and climate science studies. Sample analysis is the fundamental and most effective method for deep-seawater research, and it is essential to collect high-quality water samples for the scientific community. Over nearly a century, various deep-seawater samplers have been developed to meet different research needs. This study provides a comprehensive review of deep-seawater sampling technology and instruments to highlight the associated research background and importance, summarize sampling principles, and categorize typical samplers. This review focuses on the key technologies that deep-seawater samplers perform, including sealing, pressure maintenance, and temperature maintenance. Finally, prospects are presented in terms of three aspects: high fidelity, long-term series sampling, and precise sampling using autonomous underwater vehicles. This review can serve as a reference to achieve the precise sampling of deep seawater with high fidelity and spatiotemporal resolution in the future.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"213 ","pages":"Article 104401"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of deep-seawater samplers: Principles, applications, performance, and trends\",\"authors\":\"Shijun Wu , Zhiheng Chen , Shuo Wang , Jian Zhang , Canjun Yang\",\"doi\":\"10.1016/j.dsr.2024.104401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Research on deep seawater is of great importance to marine chemistry, biology, and climate science studies. Sample analysis is the fundamental and most effective method for deep-seawater research, and it is essential to collect high-quality water samples for the scientific community. Over nearly a century, various deep-seawater samplers have been developed to meet different research needs. This study provides a comprehensive review of deep-seawater sampling technology and instruments to highlight the associated research background and importance, summarize sampling principles, and categorize typical samplers. This review focuses on the key technologies that deep-seawater samplers perform, including sealing, pressure maintenance, and temperature maintenance. Finally, prospects are presented in terms of three aspects: high fidelity, long-term series sampling, and precise sampling using autonomous underwater vehicles. This review can serve as a reference to achieve the precise sampling of deep seawater with high fidelity and spatiotemporal resolution in the future.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"213 \",\"pages\":\"Article 104401\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724001717\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001717","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
A review of deep-seawater samplers: Principles, applications, performance, and trends
Research on deep seawater is of great importance to marine chemistry, biology, and climate science studies. Sample analysis is the fundamental and most effective method for deep-seawater research, and it is essential to collect high-quality water samples for the scientific community. Over nearly a century, various deep-seawater samplers have been developed to meet different research needs. This study provides a comprehensive review of deep-seawater sampling technology and instruments to highlight the associated research background and importance, summarize sampling principles, and categorize typical samplers. This review focuses on the key technologies that deep-seawater samplers perform, including sealing, pressure maintenance, and temperature maintenance. Finally, prospects are presented in terms of three aspects: high fidelity, long-term series sampling, and precise sampling using autonomous underwater vehicles. This review can serve as a reference to achieve the precise sampling of deep seawater with high fidelity and spatiotemporal resolution in the future.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.