{"title":"利用接入点选择和元启发式算法提高 NOMA 异构 MEC 网络的安全卸载性能","authors":"Truong Van Truong , Anand Nayyar","doi":"10.1016/j.comnet.2024.110802","DOIUrl":null,"url":null,"abstract":"<div><p>The research delves into the intricate domain of security offloading within the context of non-orthogonal multiple access (NOMA) heterogeneous mobile edge computing (het-MEC) networks operating over Rayleigh fading channels. The investigation centers on a system model comprising a single antenna-equipped edge user, denoted as <span><math><mi>U</mi></math></span>, which strategically offloads computational tasks to two distinct heterogeneous wireless access points (APs): the far AP (<span><math><mrow><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>) and the near one (<span><math><mrow><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), employing NOMA techniques. Notably, the research accounts for a passive eavesdropper (<span><math><mi>E</mi></math></span>) intending to intercept the <span><math><mrow><mi>U</mi><mo>−</mo><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> transmission. A four-phase protocol is proposed to ensure the security offloading process, namely SAPS, which leverages wireless access point selection (APS) and physical layer security (PLS) techniques. The focus extends to derive a closed-form expression for a novel critical system performance metric: the secrecy successful computation probability (SSCP). Furthermore, an algorithm based on Ant Colony Optimization (ACO) within the continuous domain is introduced, which aims to enhance the SSCP by intelligently determining system parameters. The impact of critical factors such as transmit power, power allocation coefficient, bandwidth, CPU frequency, and task division ratio under the SAPS scheme is explored and compared to the conventional approach using pure NOMA. Remarkably, the algorithm in the proposed scheme demonstrates up to a 3% performance improvement. The validity and accuracy of the study findings are verified through Monte-Carlo simulations. The work contributes significantly to advancing secure offloading strategies in NOMA-based MEC networks, offering valuable insights for practical deployment and optimization.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"254 ","pages":"Article 110802"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing security offloading performance in NOMA heterogeneous MEC networks using access point selection and meta-heuristic algorithm\",\"authors\":\"Truong Van Truong , Anand Nayyar\",\"doi\":\"10.1016/j.comnet.2024.110802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research delves into the intricate domain of security offloading within the context of non-orthogonal multiple access (NOMA) heterogeneous mobile edge computing (het-MEC) networks operating over Rayleigh fading channels. The investigation centers on a system model comprising a single antenna-equipped edge user, denoted as <span><math><mi>U</mi></math></span>, which strategically offloads computational tasks to two distinct heterogeneous wireless access points (APs): the far AP (<span><math><mrow><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>) and the near one (<span><math><mrow><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), employing NOMA techniques. Notably, the research accounts for a passive eavesdropper (<span><math><mi>E</mi></math></span>) intending to intercept the <span><math><mrow><mi>U</mi><mo>−</mo><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> transmission. A four-phase protocol is proposed to ensure the security offloading process, namely SAPS, which leverages wireless access point selection (APS) and physical layer security (PLS) techniques. The focus extends to derive a closed-form expression for a novel critical system performance metric: the secrecy successful computation probability (SSCP). Furthermore, an algorithm based on Ant Colony Optimization (ACO) within the continuous domain is introduced, which aims to enhance the SSCP by intelligently determining system parameters. The impact of critical factors such as transmit power, power allocation coefficient, bandwidth, CPU frequency, and task division ratio under the SAPS scheme is explored and compared to the conventional approach using pure NOMA. Remarkably, the algorithm in the proposed scheme demonstrates up to a 3% performance improvement. The validity and accuracy of the study findings are verified through Monte-Carlo simulations. The work contributes significantly to advancing secure offloading strategies in NOMA-based MEC networks, offering valuable insights for practical deployment and optimization.</p></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"254 \",\"pages\":\"Article 110802\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624006340\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Enhancing security offloading performance in NOMA heterogeneous MEC networks using access point selection and meta-heuristic algorithm
The research delves into the intricate domain of security offloading within the context of non-orthogonal multiple access (NOMA) heterogeneous mobile edge computing (het-MEC) networks operating over Rayleigh fading channels. The investigation centers on a system model comprising a single antenna-equipped edge user, denoted as , which strategically offloads computational tasks to two distinct heterogeneous wireless access points (APs): the far AP () and the near one (), employing NOMA techniques. Notably, the research accounts for a passive eavesdropper () intending to intercept the transmission. A four-phase protocol is proposed to ensure the security offloading process, namely SAPS, which leverages wireless access point selection (APS) and physical layer security (PLS) techniques. The focus extends to derive a closed-form expression for a novel critical system performance metric: the secrecy successful computation probability (SSCP). Furthermore, an algorithm based on Ant Colony Optimization (ACO) within the continuous domain is introduced, which aims to enhance the SSCP by intelligently determining system parameters. The impact of critical factors such as transmit power, power allocation coefficient, bandwidth, CPU frequency, and task division ratio under the SAPS scheme is explored and compared to the conventional approach using pure NOMA. Remarkably, the algorithm in the proposed scheme demonstrates up to a 3% performance improvement. The validity and accuracy of the study findings are verified through Monte-Carlo simulations. The work contributes significantly to advancing secure offloading strategies in NOMA-based MEC networks, offering valuable insights for practical deployment and optimization.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.