火花等离子烧结 Ta-10W 合金的工艺优化与性能

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2024-09-18 DOI:10.1016/j.intermet.2024.108495
Yingjie Yu , Yi Xu , Xingyun Duan , Shuai Zhu , Yaping Lei , Haiqing Xia , Ao Wang , Qiong Jiang , Jiancheng Tang
{"title":"火花等离子烧结 Ta-10W 合金的工艺优化与性能","authors":"Yingjie Yu ,&nbsp;Yi Xu ,&nbsp;Xingyun Duan ,&nbsp;Shuai Zhu ,&nbsp;Yaping Lei ,&nbsp;Haiqing Xia ,&nbsp;Ao Wang ,&nbsp;Qiong Jiang ,&nbsp;Jiancheng Tang","doi":"10.1016/j.intermet.2024.108495","DOIUrl":null,"url":null,"abstract":"<div><p>Ta-10W alloy has the advantages of excellent high temperature strength, high ductility, good weldability and excellent corrosion resistance, and is widely used in chemical and aerospace fields. At present, the commerical tantalum-tungsten alloy products are mainly prepared by vacuum electron beam melting method, but the processing costs a lot which is attributable to its cumbersome processing process. Compared with it, although the tantalum alloy prepared by powder metallurgy is slightly less plastic, it has higher strength. In this work, Tantalum-tungsten (10 wt% W) mixed powder was used as raw material, and Ta-10W alloy was prepared by spark plasma sintering (SPS) technology, and high-performance Ta-10W alloy was prepared by changing the sintering parameters. The test results indicated that the sample had the best mechanical properties at the sintering process 2 (1900 °C, 40 MPa, 10 min). Its hardness was 434.38 HV<sub>0.2</sub>, the yield strength of compression at room temperature was 1370 MPa, and it had a good elongation (44.8 %). Its average friction coefficient was 0.677 and abrasive wear was the dominant wear mechanism. Besides, the Ta-10W alloy prepared by SPS exhibited brittle fractures, and the presence of brittle phases, W phase, Ta<sub>2</sub>O<sub>5</sub> and Ta<sub>2</sub>C further deteriorated sintered Ta-10W's mechanical properties.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108495"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process optimization and performance of spark plasma sintered Ta-10W alloy\",\"authors\":\"Yingjie Yu ,&nbsp;Yi Xu ,&nbsp;Xingyun Duan ,&nbsp;Shuai Zhu ,&nbsp;Yaping Lei ,&nbsp;Haiqing Xia ,&nbsp;Ao Wang ,&nbsp;Qiong Jiang ,&nbsp;Jiancheng Tang\",\"doi\":\"10.1016/j.intermet.2024.108495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ta-10W alloy has the advantages of excellent high temperature strength, high ductility, good weldability and excellent corrosion resistance, and is widely used in chemical and aerospace fields. At present, the commerical tantalum-tungsten alloy products are mainly prepared by vacuum electron beam melting method, but the processing costs a lot which is attributable to its cumbersome processing process. Compared with it, although the tantalum alloy prepared by powder metallurgy is slightly less plastic, it has higher strength. In this work, Tantalum-tungsten (10 wt% W) mixed powder was used as raw material, and Ta-10W alloy was prepared by spark plasma sintering (SPS) technology, and high-performance Ta-10W alloy was prepared by changing the sintering parameters. The test results indicated that the sample had the best mechanical properties at the sintering process 2 (1900 °C, 40 MPa, 10 min). Its hardness was 434.38 HV<sub>0.2</sub>, the yield strength of compression at room temperature was 1370 MPa, and it had a good elongation (44.8 %). Its average friction coefficient was 0.677 and abrasive wear was the dominant wear mechanism. Besides, the Ta-10W alloy prepared by SPS exhibited brittle fractures, and the presence of brittle phases, W phase, Ta<sub>2</sub>O<sub>5</sub> and Ta<sub>2</sub>C further deteriorated sintered Ta-10W's mechanical properties.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108495\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003145\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003145","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Ta-10W 合金具有优异的高温强度、高延展性、良好的可焊性和卓越的耐腐蚀性,被广泛应用于化工和航空航天领域。目前,商用钽钨合金产品主要采用真空电子束熔炼法制备,但由于加工工艺繁琐,加工成本较高。与之相比,粉末冶金法制备的钽合金虽然塑性稍差,但强度更高。本研究以钽-钨(10 wt% W)混合粉为原料,采用火花等离子烧结(SPS)技术制备了 Ta-10W 合金,并通过改变烧结参数制备了高性能的 Ta-10W 合金。测试结果表明,在烧结工艺 2(1900 °C、40 兆帕、10 分钟)下,样品的机械性能最佳。其硬度为 434.38 HV0.2,室温下的压缩屈服强度为 1370 兆帕,伸长率为 44.8%。其平均摩擦系数为 0.677,磨料磨损是主要的磨损机制。此外,通过 SPS 制备的 Ta-10W 合金表现出脆性断裂,脆性相、W 相、Ta2O5 和 Ta2C 的存在进一步恶化了烧结 Ta-10W 的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process optimization and performance of spark plasma sintered Ta-10W alloy

Ta-10W alloy has the advantages of excellent high temperature strength, high ductility, good weldability and excellent corrosion resistance, and is widely used in chemical and aerospace fields. At present, the commerical tantalum-tungsten alloy products are mainly prepared by vacuum electron beam melting method, but the processing costs a lot which is attributable to its cumbersome processing process. Compared with it, although the tantalum alloy prepared by powder metallurgy is slightly less plastic, it has higher strength. In this work, Tantalum-tungsten (10 wt% W) mixed powder was used as raw material, and Ta-10W alloy was prepared by spark plasma sintering (SPS) technology, and high-performance Ta-10W alloy was prepared by changing the sintering parameters. The test results indicated that the sample had the best mechanical properties at the sintering process 2 (1900 °C, 40 MPa, 10 min). Its hardness was 434.38 HV0.2, the yield strength of compression at room temperature was 1370 MPa, and it had a good elongation (44.8 %). Its average friction coefficient was 0.677 and abrasive wear was the dominant wear mechanism. Besides, the Ta-10W alloy prepared by SPS exhibited brittle fractures, and the presence of brittle phases, W phase, Ta2O5 and Ta2C further deteriorated sintered Ta-10W's mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Microstructure and wear resistance of multi-layer graphene doped AlCoCrFeNi2.1 high-entropy alloy self-lubricating coating prepared by laser cladding Enhanced mechanical properties of Nb-18.7Si alloy by addition of ceramic nano particles for microstructural control Crystal structure and hydrogen storage properties of ZrNbFeCo medium-entropy alloy Investigation of tribological properties of heat-treated ZrNbTiVAl high entropy alloy in dry sliding conditions Microstructure evolution and tensile properties behavior during aging temperature of CoCrFeNi-based high entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1