{"title":"卡卢扎-克莱因宇宙学中挤压相干态的出现","authors":"","doi":"10.1016/j.aop.2024.169805","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider a propagating scalar field on Kaluza–Klein-type cosmological background. It is shown that this geometrical description of the Universe resembles – from a Hamiltonian standpoint – a damped harmonic oscillator with mass and frequency, both time-dependents. In this scenario, we construct the squeezed coherent states (SCSs) for the quantized scalar field by employing the invariant operator method of Lewis–Riesenfeld (non-Hermitian) in a non-unitary approach. The non-classicality of SCSs has been discussed by examining the quadrature squeezing properties from the uncertainty principle. Moreover, we compute the probability density, which allows us to investigate whether SCSs can be used to seek traces of extra dimensions. We then analyze the effects of the existence of supplementary space on cosmological particle production in SCSs by considering different cosmological eras.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of squeezed coherent states in Kaluza–Klein cosmology\",\"authors\":\"\",\"doi\":\"10.1016/j.aop.2024.169805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we consider a propagating scalar field on Kaluza–Klein-type cosmological background. It is shown that this geometrical description of the Universe resembles – from a Hamiltonian standpoint – a damped harmonic oscillator with mass and frequency, both time-dependents. In this scenario, we construct the squeezed coherent states (SCSs) for the quantized scalar field by employing the invariant operator method of Lewis–Riesenfeld (non-Hermitian) in a non-unitary approach. The non-classicality of SCSs has been discussed by examining the quadrature squeezing properties from the uncertainty principle. Moreover, we compute the probability density, which allows us to investigate whether SCSs can be used to seek traces of extra dimensions. We then analyze the effects of the existence of supplementary space on cosmological particle production in SCSs by considering different cosmological eras.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002124\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002124","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergence of squeezed coherent states in Kaluza–Klein cosmology
In this work, we consider a propagating scalar field on Kaluza–Klein-type cosmological background. It is shown that this geometrical description of the Universe resembles – from a Hamiltonian standpoint – a damped harmonic oscillator with mass and frequency, both time-dependents. In this scenario, we construct the squeezed coherent states (SCSs) for the quantized scalar field by employing the invariant operator method of Lewis–Riesenfeld (non-Hermitian) in a non-unitary approach. The non-classicality of SCSs has been discussed by examining the quadrature squeezing properties from the uncertainty principle. Moreover, we compute the probability density, which allows us to investigate whether SCSs can be used to seek traces of extra dimensions. We then analyze the effects of the existence of supplementary space on cosmological particle production in SCSs by considering different cosmological eras.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.