细胞旁屏障:在评估其对肾上皮功能的贡献方面取得的进展

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology Pub Date : 2024-09-12 DOI:10.1016/j.cbpa.2024.111741
Sima Jonusaite, Nina Himmerkus
{"title":"细胞旁屏障:在评估其对肾上皮功能的贡献方面取得的进展","authors":"Sima Jonusaite,&nbsp;Nina Himmerkus","doi":"10.1016/j.cbpa.2024.111741","DOIUrl":null,"url":null,"abstract":"<div><p>Regulation of salt and water balance occupies a dominant role in the physiology of many animals and often relies on the function of the renal system. In the mammalian kidney, epithelial ion and water transport requires high degree of coordination between the transcellular and paracellular pathways, the latter being defined by the intercellular tight junctions (TJs). TJs seal the paracellular pathway in a highly specialized manner, either by forming a barrier against the passage of solutes and/or water or by allowing the passage of ions and/or water through them. This functional TJ plasticity is now known to be provided by the members of the claudin family of tetraspan proteins. Unlike mammalian nephron, the renal structures of insects, the Malpighian tubules, lack TJs and instead have smooth septate junctions (sSJs) as paracellular barrier forming junctions. Many questions regarding the molecular and functional properties of sSJs remain open but research on model species have begun to inform our understanding. The goal of this commentary is to highlight key concepts and most recent findings that have emerged from the molecular and functional dissection of paracellular barriers in the mammalian and insect renal epithelia.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324001685/pdfft?md5=09452f0331b901b8cad6985f57320d90&pid=1-s2.0-S1095643324001685-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Paracellular barriers: Advances in assessing their contribution to renal epithelial function\",\"authors\":\"Sima Jonusaite,&nbsp;Nina Himmerkus\",\"doi\":\"10.1016/j.cbpa.2024.111741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regulation of salt and water balance occupies a dominant role in the physiology of many animals and often relies on the function of the renal system. In the mammalian kidney, epithelial ion and water transport requires high degree of coordination between the transcellular and paracellular pathways, the latter being defined by the intercellular tight junctions (TJs). TJs seal the paracellular pathway in a highly specialized manner, either by forming a barrier against the passage of solutes and/or water or by allowing the passage of ions and/or water through them. This functional TJ plasticity is now known to be provided by the members of the claudin family of tetraspan proteins. Unlike mammalian nephron, the renal structures of insects, the Malpighian tubules, lack TJs and instead have smooth septate junctions (sSJs) as paracellular barrier forming junctions. Many questions regarding the molecular and functional properties of sSJs remain open but research on model species have begun to inform our understanding. The goal of this commentary is to highlight key concepts and most recent findings that have emerged from the molecular and functional dissection of paracellular barriers in the mammalian and insect renal epithelia.</p></div>\",\"PeriodicalId\":55237,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001685/pdfft?md5=09452f0331b901b8cad6985f57320d90&pid=1-s2.0-S1095643324001685-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1095643324001685\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001685","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

盐分和水分平衡的调节在许多动物的生理学中占据着主导地位,而且往往依赖于肾脏系统的功能。在哺乳动物肾脏中,上皮细胞的离子和水运输需要跨细胞和旁细胞途径之间的高度协调,后者由细胞间紧密连接(TJs)确定。TJ 以高度专业化的方式封闭了细胞旁通路,要么形成屏障阻止溶质和/或水通过,要么允许离子和/或水通过。目前已知,这种功能性 TJ 可塑性是由四跨蛋白克劳丁(claudin)家族成员提供的。与哺乳动物的肾小球不同,昆虫的肾脏结构--马氏管(Malpighian tubules)--缺乏TJ,取而代之的是作为细胞旁屏障形成连接的平滑隔膜连接(sSJ)。有关 sSJs 分子和功能特性的许多问题仍未解决,但对模型物种的研究已开始帮助我们理解这些问题。本评论旨在强调哺乳动物和昆虫肾上皮细胞旁细胞屏障的分子和功能解剖中出现的关键概念和最新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paracellular barriers: Advances in assessing their contribution to renal epithelial function

Regulation of salt and water balance occupies a dominant role in the physiology of many animals and often relies on the function of the renal system. In the mammalian kidney, epithelial ion and water transport requires high degree of coordination between the transcellular and paracellular pathways, the latter being defined by the intercellular tight junctions (TJs). TJs seal the paracellular pathway in a highly specialized manner, either by forming a barrier against the passage of solutes and/or water or by allowing the passage of ions and/or water through them. This functional TJ plasticity is now known to be provided by the members of the claudin family of tetraspan proteins. Unlike mammalian nephron, the renal structures of insects, the Malpighian tubules, lack TJs and instead have smooth septate junctions (sSJs) as paracellular barrier forming junctions. Many questions regarding the molecular and functional properties of sSJs remain open but research on model species have begun to inform our understanding. The goal of this commentary is to highlight key concepts and most recent findings that have emerged from the molecular and functional dissection of paracellular barriers in the mammalian and insect renal epithelia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
期刊最新文献
Effects of acute exposure to freshwater acidification on developing Oryzias latipes. Influence of temperature changes on oxidative stress and antioxidant defense system in the bay scallop, Argopecten irradians. Water fluxes and nutrient absorption along the midgut of three hemipterans, Mahanarva fimbriolata, Dysdercus peruvianus, and Rhodnius prolixus. Daily rhythms of locomotor activity and transcript levels of non-visual opsins in the brain of the blind Mexican cavefish (Astyanax mexicanus). Physiological effects of research handling on the northern elephant seal (Mirounga angustirostris)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1