利用图神经网络学习断层储层中的二氧化碳羽流迁移

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-09-07 DOI:10.1016/j.cageo.2024.105711
Xin Ju , François P. Hamon , Gege Wen , Rayan Kanfar , Mauricio Araya-Polo , Hamdi A. Tchelepi
{"title":"利用图神经网络学习断层储层中的二氧化碳羽流迁移","authors":"Xin Ju ,&nbsp;François P. Hamon ,&nbsp;Gege Wen ,&nbsp;Rayan Kanfar ,&nbsp;Mauricio Araya-Polo ,&nbsp;Hamdi A. Tchelepi","doi":"10.1016/j.cageo.2024.105711","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> geological storage. Accurately capturing the impact of faults on CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105711"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks\",\"authors\":\"Xin Ju ,&nbsp;François P. Hamon ,&nbsp;Gege Wen ,&nbsp;Rayan Kanfar ,&nbsp;Mauricio Araya-Polo ,&nbsp;Hamdi A. Tchelepi\",\"doi\":\"10.1016/j.cageo.2024.105711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> geological storage. Accurately capturing the impact of faults on CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"193 \",\"pages\":\"Article 105711\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001948\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001948","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的代用模型为二氧化碳地质封存等地下流动问题的数值模拟提供了有效补充。对于许多基于卷积神经网络(CNN)或神经运算器的现有深度学习代用模型来说,准确捕捉断层对二氧化碳羽流迁移的影响仍然是一个挑战。我们利用图神经网络(GNN)领域的最新发展,采用基于图的神经模型来应对这一挑战。我们的模型将基于图的卷积长短期记忆(GConvLSTM)与一步式 GNN 模型 MeshGraphNet(MGN)相结合,可在复杂的非结构网格上运行,并限制时间误差的累积。我们证明,我们的方法可以准确预测具有防渗断层的合成储层中气体饱和度和孔隙压力的时间演化。与标准 MGN 模型相比,我们的结果表明精度更高,时间误差积累更少。我们还展示了我们的算法对网格配置、边界条件和训练集中未包含的异质渗透场的出色通用性。这项工作凸显了基于 GNN 的方法在准确、快速地模拟具有复杂断层和裂缝的地下流动方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks

Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO2 geological storage. Accurately capturing the impact of faults on CO2 plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1