Linshu Li , Jiaxi Chang , Zhaosong Xu , Longfei Chu , Junhao Zhang , Qiang Xing , Zhenmin Bao
{"title":"丝裂原活化蛋白激酶 (MAPK) 的功能分配揭示了扇贝 Argopecten irradians irradians 的耐热性能","authors":"Linshu Li , Jiaxi Chang , Zhaosong Xu , Longfei Chu , Junhao Zhang , Qiang Xing , Zhenmin Bao","doi":"10.1016/j.marenvres.2024.106750","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three <em>MAPK</em> genes: <em>AiERK</em>, <em>Aip38</em>, and <em>AiJNK</em>. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of <em>AiMAPKs</em> were ubiquitous, with significant increases in <em>AiERK</em> expression observed at the umbo larval stage (3.09-fold), while <em>Aip38</em> and <em>AiJNK</em> were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of <em>AiMAPKs</em> were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, <em>AiMAPKs</em> expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of <em>AiMAPKs</em> genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106750"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians\",\"authors\":\"Linshu Li , Jiaxi Chang , Zhaosong Xu , Longfei Chu , Junhao Zhang , Qiang Xing , Zhenmin Bao\",\"doi\":\"10.1016/j.marenvres.2024.106750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three <em>MAPK</em> genes: <em>AiERK</em>, <em>Aip38</em>, and <em>AiJNK</em>. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of <em>AiMAPKs</em> were ubiquitous, with significant increases in <em>AiERK</em> expression observed at the umbo larval stage (3.09-fold), while <em>Aip38</em> and <em>AiJNK</em> were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of <em>AiMAPKs</em> were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, <em>AiMAPKs</em> expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of <em>AiMAPKs</em> genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.</p></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"202 \",\"pages\":\"Article 106750\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113624004112\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004112","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.