氢能技术的机器学习辅助风险检测战略

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-09-14 DOI:10.1016/j.psep.2024.09.031
{"title":"氢能技术的机器学习辅助风险检测战略","authors":"","doi":"10.1016/j.psep.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><p>Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H<sub>2</sub>-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant’s safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H<sub>2</sub> environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handling equipment. A machine-learning model to predict the fatigue crack growth in gaseous hydrogen environments is developed and integrated with the conventional RBI approach. The proposed methodology is validated on three pipelines transporting hydrogen and natural gas in different concentrations. The results show how similar operating conditions can determine different degradation rates depending on the environment and highlight how hydrogen-enhanced fatigue can reduce the pipelines’ lifetime.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095758202401156X/pdfft?md5=8e25adb3a12f7105fa1c0d47c011df10&pid=1-s2.0-S095758202401156X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning-aided risk-based inspection strategy for hydrogen technologies\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H<sub>2</sub>-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant’s safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H<sub>2</sub> environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handling equipment. A machine-learning model to predict the fatigue crack growth in gaseous hydrogen environments is developed and integrated with the conventional RBI approach. The proposed methodology is validated on three pipelines transporting hydrogen and natural gas in different concentrations. The results show how similar operating conditions can determine different degradation rates depending on the environment and highlight how hydrogen-enhanced fatigue can reduce the pipelines’ lifetime.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095758202401156X/pdfft?md5=8e25adb3a12f7105fa1c0d47c011df10&pid=1-s2.0-S095758202401156X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095758202401156X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095758202401156X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管在技术上具有挑战性,但有效、安全和经济的运输对于氢气技术的广泛推广至关重要。利用改造后的天然气管道运输大量氢气是一个很有前景的选择。然而,富含氢的环境容易使管道钢材退化,降低其承载能力并加速裂纹扩展。定期检查和维护活动可以保持管道的完整性,确保安全运行。基于风险的检查 (RBI) 方法基于对每个组件项目的风险评估。它将大部分检查活动集中在高风险部件上,以降低成本,同时最大限度地提高工厂的安全性和可用性。然而,RBI 标准并未考虑氢气引起的退化,因此无法用于在 H2 环境中运行的工业设备。本研究针对氢气处理设备的基于风险的检查规划提出了一种新颖的临时方法。开发了一种机器学习模型来预测气态氢环境中的疲劳裂纹生长,并将其与传统的 RBI 方法相结合。所提出的方法在三条输送不同浓度氢气和天然气的管道上进行了验证。结果表明,类似的操作条件如何根据环境决定不同的降解率,并突出了氢增强疲劳如何缩短管道的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-aided risk-based inspection strategy for hydrogen technologies

Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H2-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant’s safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H2 environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handling equipment. A machine-learning model to predict the fatigue crack growth in gaseous hydrogen environments is developed and integrated with the conventional RBI approach. The proposed methodology is validated on three pipelines transporting hydrogen and natural gas in different concentrations. The results show how similar operating conditions can determine different degradation rates depending on the environment and highlight how hydrogen-enhanced fatigue can reduce the pipelines’ lifetime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
An avalanche transistor-based Marx circuit pulse generator with sub-nanosecond, high frequency and high-voltage for pathogenic Escherichia coli ablation Fabrication of heterogeneous catalyst for production of biodiesel form municipal sludge Soil utilization analysis of synergistic pyrolysis products of flue gas desulfurization gypsum and biomass Dispersion and explosion characteristics of multi-phase fuel with different charge structure Optimizing multivariate alarm systems: A study on joint false alarm rate, and joint missed alarm rate using linear programming technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1