{"title":"评估滋养层干细胞人体胎盘芯片的纳米毒性","authors":"","doi":"10.1016/j.ecoenv.2024.117051","DOIUrl":null,"url":null,"abstract":"<div><p>Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011278/pdfft?md5=fc11dfcf5f408e3a57685a14d2d2a7e4&pid=1-s2.0-S0147651324011278-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoenv.2024.117051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.</p></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011278/pdfft?md5=fc11dfcf5f408e3a57685a14d2d2a7e4&pid=1-s2.0-S0147651324011278-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011278\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011278","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells
Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models. In this study, we established a placenta-on-a-chip model capable of recapitulating nanoparticle exposure to assess potential nanotoxicity. The model was assembled by coculturing human trophoblast stem cells (hTSCs) and endothelial cells within a dynamic microsystem. hTSCs exhibited progressive differentiation into syncytiotrophoblasts under continuous fluid flow, forming a bilayered trophoblastic epithelium that mimicking both structural and functional aspects of human placental villi. Copper oxide nanoparticles (CuO NPs) were introduced into the trophoblastic side to simulate maternal blood exposure. Our findings revealed that CuO NPs hindered hTSCs differentiation, leading to diminished hormone secretion and impaired glucose transport. Subsequent analysis indicated that CuO NPs disrupted the autophagic flux in trophoblasts and induced apoptosis. Furthermore, the placenta-on-a-chip model exhibited inflammatory responses to CuO NP exposure, including maternal macrophage activation, inflammatory cytokine secretion, and endothelial barrier disruption. Dysfunction of the placental barrier and the ensuing inflammatory cascades may contribute to aberrant fetal development. Overall, our placenta-on-a-chip model offers a promising platform for assessing nanoparticle exposure-related risks and conducting toxicology studies.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.