{"title":"纳米塑料暴露诱发的线粒体功能障碍导致人脑器官组织干细胞分化紊乱","authors":"","doi":"10.1016/j.ecoenv.2024.117063","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011394/pdfft?md5=b76ea6044f363719112395b83b2de105&pid=1-s2.0-S0147651324011394-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoplastics exposure-induced mitochondrial dysfunction contributes to disrupted stem cell differentiation in human cerebral organoids\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoenv.2024.117063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.</p></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011394/pdfft?md5=b76ea6044f363719112395b83b2de105&pid=1-s2.0-S0147651324011394-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324011394\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011394","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nanoplastics exposure-induced mitochondrial dysfunction contributes to disrupted stem cell differentiation in human cerebral organoids
Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.