基于数据驱动的粒子群优化技术用于电动汽车充电站选址

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-09-18 DOI:10.1016/j.energy.2024.133197
{"title":"基于数据驱动的粒子群优化技术用于电动汽车充电站选址","authors":"","doi":"10.1016/j.energy.2024.133197","DOIUrl":null,"url":null,"abstract":"<div><p>Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.</p></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimization based on data driven for EV charging station siting\",\"authors\":\"\",\"doi\":\"10.1016/j.energy.2024.133197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.</p></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224029724\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224029724","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

充电站是电动汽车(EV)的重要配套设施。如今,电动汽车产业发展迅速,但充电站建设不完善或选址不合理,严重降低了人们购买电动汽车的意愿,导致很多地区出现电动汽车充电难的问题。目前,电动汽车充电站选址研究领域存在无法快速准确计算充电站选址最优解的问题。为此,提出了一种基于深度神经网络修正边界的粒子群优化方法(DNNMBPSO)来解决这一问题。DNNMBPSO 通过应用深度学习来修改粒子群优化的边界,从而降低目标函数的收敛值。DNNMBPSO 是一种启发式与数据驱动相结合的算法。本研究将 DNNMBPSO 应用于有 50 个备选点、500 个备选点和 1000 个备选点的系统选址研究,以及中国广西南宁的电动汽车充电站选址案例。结果发现,与遗传算法、非洲秃鹫优化算法、粒子群优化算法和灰狼优化算法相比,基于 DNNMBPSO 的目标函数收敛值分别至少低 5.5%、1.7%、8.23% 和 14.7%。传统的启发式优化算法无法在大规模系统中找到最优解,而 DNNMBPSO 则显示了在大规模系统中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle swarm optimization based on data driven for EV charging station siting

Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Power increase potential of coal-fired power plant assisted by the heat release of the thermal energy storage system: Restrictions and thermodynamic performance Assisting denitrification and strengthening combustion by using ammonia/coal binary fuel gasification-combustion: Effects of injecting position and air distribution Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage Multi-innovation adaptive Kalman filter algorithm for estimating the SOC of lithium-ion batteries based on singular value decomposition and Schmidt orthogonal transformation Efficient and low-NOx combustion in a grate-fired boiler by feeding biomass non-uniformly along grate width: An integrated modeling study with experimental validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1