西西里岛全尺度水平流湿地峰值负荷恢复时间建模

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Ecological Engineering Pub Date : 2024-09-18 DOI:10.1016/j.ecoleng.2024.107407
{"title":"西西里岛全尺度水平流湿地峰值负荷恢复时间建模","authors":"","doi":"10.1016/j.ecoleng.2024.107407","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to simulate the water flow and reactive transport of pollutants in a horizontal flow (HF) wetland to better understand the recovery time of the treatment performance for <em>peak load</em> events. For the simulation, the processes-based model HYDRUS and its Wetland Module is used. The system under investigation is the first stage of the 9-years old hybrid treatment wetland of a large retail store, located in Catania, Italy. For the calibration of the hydraulic model, the data of a tracer test was used. The data set of the systems is available for a seven year period including organic matter and ammonia nitrogen. The data was split into a standard event representing low loading conditions and determined <em>peak load</em> events with high loadings. The results show that the response time of the model correlates with the hydraulic retention time from the tracer experiment and indicates that higher peak load concentrations at the inlet of the system lead to a longer recovery time of the wetland.</p></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925857424002325/pdfft?md5=7013330824838b1e353249f07c1f9aec&pid=1-s2.0-S0925857424002325-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling the recovery time from peak loads in a full-scale horizontal flow wetland in Sicily\",\"authors\":\"\",\"doi\":\"10.1016/j.ecoleng.2024.107407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study was to simulate the water flow and reactive transport of pollutants in a horizontal flow (HF) wetland to better understand the recovery time of the treatment performance for <em>peak load</em> events. For the simulation, the processes-based model HYDRUS and its Wetland Module is used. The system under investigation is the first stage of the 9-years old hybrid treatment wetland of a large retail store, located in Catania, Italy. For the calibration of the hydraulic model, the data of a tracer test was used. The data set of the systems is available for a seven year period including organic matter and ammonia nitrogen. The data was split into a standard event representing low loading conditions and determined <em>peak load</em> events with high loadings. The results show that the response time of the model correlates with the hydraulic retention time from the tracer experiment and indicates that higher peak load concentrations at the inlet of the system lead to a longer recovery time of the wetland.</p></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925857424002325/pdfft?md5=7013330824838b1e353249f07c1f9aec&pid=1-s2.0-S0925857424002325-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857424002325\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424002325","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是模拟水平流(HF)湿地中的水流和污染物的反应迁移,以更好地了解高峰负荷事件下处理性能的恢复时间。模拟使用了基于过程的模型 HYDRUS 及其湿地模块。所研究的系统是位于意大利卡塔尼亚的一家大型零售店已有 9 年历史的混合处理湿地的第一阶段。为了校准水力模型,使用了示踪试验的数据。该系统的数据集可提供七年的数据,包括有机物和氨氮。数据分为代表低负荷条件的标准事件和确定的高负荷峰值事件。结果表明,模型的响应时间与示踪实验的水力滞留时间相关,并表明系统入口处的峰值负荷浓度越高,湿地的恢复时间就越长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling the recovery time from peak loads in a full-scale horizontal flow wetland in Sicily

The aim of this study was to simulate the water flow and reactive transport of pollutants in a horizontal flow (HF) wetland to better understand the recovery time of the treatment performance for peak load events. For the simulation, the processes-based model HYDRUS and its Wetland Module is used. The system under investigation is the first stage of the 9-years old hybrid treatment wetland of a large retail store, located in Catania, Italy. For the calibration of the hydraulic model, the data of a tracer test was used. The data set of the systems is available for a seven year period including organic matter and ammonia nitrogen. The data was split into a standard event representing low loading conditions and determined peak load events with high loadings. The results show that the response time of the model correlates with the hydraulic retention time from the tracer experiment and indicates that higher peak load concentrations at the inlet of the system lead to a longer recovery time of the wetland.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
期刊最新文献
Analysis of changes before and after forest fires with LAI, NDVI and ET time series: Focusing on major forest fires in Korea Performance of carbon and nitrogen removal in a system combining an aerobic trickling filter followed by two stages of vertical flow treatment wetland Fire-sensitive and threatened plants in the Upper Paraguay River Basin, Brazil: Identifying priority areas for Integrated Fire Management and ecological restoration Riparian restoration in sandy zones with alfalfa as pioneer plant in initial stage of soil and water bioengineering Assessing the impact of sediment characteristics on vegetation recovery in debris flow fans: A case study of the Ohya Region, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1