Mario A. Sánchez , Juan C. Maya , Farid Chejne , Brennan Pecha , Adriana M. Quinchía-Figueroa , Nevis A. Ruiz Márquez , Peter Ciesielski
{"title":"生物质各向异性颗粒快速热解过程中的初级气溶胶喷射建模","authors":"Mario A. Sánchez , Juan C. Maya , Farid Chejne , Brennan Pecha , Adriana M. Quinchía-Figueroa , Nevis A. Ruiz Márquez , Peter Ciesielski","doi":"10.1016/j.biombioe.2024.107376","DOIUrl":null,"url":null,"abstract":"<div><p>A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m<sup>2</sup>.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.</p></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107376"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the ejection of primary aerosols during the fast pyrolysis of biomass anisotropic particles\",\"authors\":\"Mario A. Sánchez , Juan C. Maya , Farid Chejne , Brennan Pecha , Adriana M. Quinchía-Figueroa , Nevis A. Ruiz Márquez , Peter Ciesielski\",\"doi\":\"10.1016/j.biombioe.2024.107376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m<sup>2</sup>.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.</p></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"190 \",\"pages\":\"Article 107376\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424003295\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003295","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Modelling the ejection of primary aerosols during the fast pyrolysis of biomass anisotropic particles
A model for the fast pyrolysis of anisotropic biomass particles is presented which considers bubbling dynamics within the liquid intermediate phase (metaplast) and aerosol ejection from this phase. The model employs the population balance equation and the method of moments to estimate the production rate and resultant size distribution of aerosol ejections, incorporating a detailed CRECK reaction mechanism, and considers the effect of anisotropic biomass microstructure on the intraparticle transport of mass and energy. This study investigates the impact of particle size, heating rate (heat transfer coefficient), and lignocellulosic composition on aerosol ejection. The model predicts that, at high heating rates (convective heat transfer coefficient of 359 W/m2.K), aerosols can contribute over 20% to the heavy fraction yield in bio-oil for small particles (1 mm diameter, 4 mm length). The model can predict aerosol size distribution and surface area, indicating an average size of 20 μm for bubbles and 5 μm for aerosols during increased bubble production and aerosol ejection rates. These findings are consistent with prior experimental results and provide essential information for future modeling of extra-particle reactions of the aerosols as they progress through the reactor.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.