{"title":"高富集双壁碳纳米管网络组件的纳米孔结构","authors":"Jae Hun Hwang, Dong Young Kim","doi":"10.1016/j.micromeso.2024.113336","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient catalytic chemical vapor deposition method utilizing an Fe-Mo/MgO-supported catalyst was developed, allowing the highly selective synthesis of double-walled carbon nanotubes (DWCNTs) in high yield, exceeding 89 %. The carbon yield, tube diameter, and crystallinity of the synthesized DWCNTs were characterized using high-resolution transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy. The nanopore structure and adsorption characteristics of the DWCNTs purified by removing the support and catalyst (i.e., Fe-Mo/MgO) were analyzed <em>via</em> N<sub>2</sub> adsorption–desorption measurements at 77 K. A remarkable advantage of the highly enriched DWCNTs with small bundle network structures is that guest molecules can easily access the outer (i.e., external) surface of the DWCNTs, resulting in a large specific surface area (SSA) of >691 m<sup>2</sup> g<sup>−1</sup> and pore volume of 2.70 mL g<sup>−1</sup> in the double-walled structures. Thus, highly enriched DWCNTs with large pore volumes and SSAs prepared <em>via</em> facile solution-based processes can yield CNT-based structures for applications in high-performance energy storage.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113336"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopore structure of highly enriched double-walled carbon nanotube network assemblies\",\"authors\":\"Jae Hun Hwang, Dong Young Kim\",\"doi\":\"10.1016/j.micromeso.2024.113336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient catalytic chemical vapor deposition method utilizing an Fe-Mo/MgO-supported catalyst was developed, allowing the highly selective synthesis of double-walled carbon nanotubes (DWCNTs) in high yield, exceeding 89 %. The carbon yield, tube diameter, and crystallinity of the synthesized DWCNTs were characterized using high-resolution transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy. The nanopore structure and adsorption characteristics of the DWCNTs purified by removing the support and catalyst (i.e., Fe-Mo/MgO) were analyzed <em>via</em> N<sub>2</sub> adsorption–desorption measurements at 77 K. A remarkable advantage of the highly enriched DWCNTs with small bundle network structures is that guest molecules can easily access the outer (i.e., external) surface of the DWCNTs, resulting in a large specific surface area (SSA) of >691 m<sup>2</sup> g<sup>−1</sup> and pore volume of 2.70 mL g<sup>−1</sup> in the double-walled structures. Thus, highly enriched DWCNTs with large pore volumes and SSAs prepared <em>via</em> facile solution-based processes can yield CNT-based structures for applications in high-performance energy storage.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"381 \",\"pages\":\"Article 113336\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003585\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003585","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究开发了一种利用铁-钼/氧化镁支撑催化剂的高效催化化学气相沉积方法,可高选择性地合成双壁碳纳米管 (DWCNT),产率超过 89%。利用高分辨率透射电子显微镜、场发射扫描电子显微镜、热重分析和拉曼光谱对合成的双壁碳纳米管的碳产率、管径和结晶度进行了表征。通过在 77 K 下进行 N2 吸附-解吸测量,分析了去除支撑物和催化剂(即 Fe-Mo/MgO)后纯化的 DWCNTs 的纳米孔结构和吸附特性、外)表面,从而使双壁结构的比表面积(SSA)达到 691 m2 g-1,孔体积达到 2.70 mL g-1。因此,通过基于溶液的简便工艺制备出具有大孔隙率和大比表面积的高富集 DWCNTs,可以产生应用于高性能储能的 CNT 结构。
Nanopore structure of highly enriched double-walled carbon nanotube network assemblies
An efficient catalytic chemical vapor deposition method utilizing an Fe-Mo/MgO-supported catalyst was developed, allowing the highly selective synthesis of double-walled carbon nanotubes (DWCNTs) in high yield, exceeding 89 %. The carbon yield, tube diameter, and crystallinity of the synthesized DWCNTs were characterized using high-resolution transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy. The nanopore structure and adsorption characteristics of the DWCNTs purified by removing the support and catalyst (i.e., Fe-Mo/MgO) were analyzed via N2 adsorption–desorption measurements at 77 K. A remarkable advantage of the highly enriched DWCNTs with small bundle network structures is that guest molecules can easily access the outer (i.e., external) surface of the DWCNTs, resulting in a large specific surface area (SSA) of >691 m2 g−1 and pore volume of 2.70 mL g−1 in the double-walled structures. Thus, highly enriched DWCNTs with large pore volumes and SSAs prepared via facile solution-based processes can yield CNT-based structures for applications in high-performance energy storage.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.