基于永磁同步电机机械继电器的电子齿轮功能

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Electrical Systems in Transportation Pub Date : 2024-09-18 DOI:10.1049/2024/6582973
Lynn Verkroost, Mauro Demeyer, Homayoun Soltani Gohari, Johan Lecoutere, Peter Sergeant, Hendrik Vansompel
{"title":"基于永磁同步电机机械继电器的电子齿轮功能","authors":"Lynn Verkroost,&nbsp;Mauro Demeyer,&nbsp;Homayoun Soltani Gohari,&nbsp;Johan Lecoutere,&nbsp;Peter Sergeant,&nbsp;Hendrik Vansompel","doi":"10.1049/2024/6582973","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Permanent magnet synchronous machines (PMSMs) are still the first choice for use in electric vehicles, due to their unparalleled efficiency and power density. However, they suffer from an inherently limited speed range. As field weakening or the addition of a mechanical gearbox deteriorates the efficiency of the drive, it is suggested in this paper to equip the drive with reconfiguration switches, giving rise to a so-called e-gear. The switches—which are implemented by means of mechanical relays—allow to change the winding connection of the electric machine from a series to a parallel connection and hence to double its efficient speed range. Simulations and experimental results on a 4-kW axial-flux PMSM confirm the feasibility of the concept and prove that the reconfiguration can be conducted in less than 35 ms.</p>\n </div>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6582973","citationCount":"0","resultStr":"{\"title\":\"E-Gear Functionality Based on Mechanical Relays in Permanent Magnet Synchronous Machines\",\"authors\":\"Lynn Verkroost,&nbsp;Mauro Demeyer,&nbsp;Homayoun Soltani Gohari,&nbsp;Johan Lecoutere,&nbsp;Peter Sergeant,&nbsp;Hendrik Vansompel\",\"doi\":\"10.1049/2024/6582973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Permanent magnet synchronous machines (PMSMs) are still the first choice for use in electric vehicles, due to their unparalleled efficiency and power density. However, they suffer from an inherently limited speed range. As field weakening or the addition of a mechanical gearbox deteriorates the efficiency of the drive, it is suggested in this paper to equip the drive with reconfiguration switches, giving rise to a so-called e-gear. The switches—which are implemented by means of mechanical relays—allow to change the winding connection of the electric machine from a series to a parallel connection and hence to double its efficient speed range. Simulations and experimental results on a 4-kW axial-flux PMSM confirm the feasibility of the concept and prove that the reconfiguration can be conducted in less than 35 ms.</p>\\n </div>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6582973\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6582973\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6582973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

永磁同步电机(PMSM)因其无与伦比的效率和功率密度,仍然是电动汽车的首选。然而,永磁同步电机本身的速度范围有限。由于磁场减弱或增加机械变速箱会降低驱动器的效率,本文建议为驱动器配备重新配置开关,即所谓的电子齿轮。这些开关通过机械继电器实现,可将电机的绕组连接从串联变为并联,从而将其有效速度范围扩大一倍。对 4 千瓦轴流式 PMSM 的模拟和实验结果证实了这一概念的可行性,并证明重新配置可在 35 毫秒内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-Gear Functionality Based on Mechanical Relays in Permanent Magnet Synchronous Machines

Permanent magnet synchronous machines (PMSMs) are still the first choice for use in electric vehicles, due to their unparalleled efficiency and power density. However, they suffer from an inherently limited speed range. As field weakening or the addition of a mechanical gearbox deteriorates the efficiency of the drive, it is suggested in this paper to equip the drive with reconfiguration switches, giving rise to a so-called e-gear. The switches—which are implemented by means of mechanical relays—allow to change the winding connection of the electric machine from a series to a parallel connection and hence to double its efficient speed range. Simulations and experimental results on a 4-kW axial-flux PMSM confirm the feasibility of the concept and prove that the reconfiguration can be conducted in less than 35 ms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
期刊最新文献
Multiresolution Models of DC Traction Power Supply Systems With Reversible Substations A Preliminary Study on 2D Convolutional Neural Network-Based Discontinuous Rail Position Classification for Detection on Rail Breaks Using Distributed Acoustic Sensing Data Research on Electromagnetic Impact of High-Power Direct Drive Permanent Magnet Synchronous Motor on Track Circuit E-Gear Functionality Based on Mechanical Relays in Permanent Magnet Synchronous Machines Dynamic Distribution of Rail Potential with Regional Insulation Alteration in Multi-Train Urban Rail Transit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1