大鼠和人类急性创伤性脊髓损伤后的灌注成像指标与损伤严重程度有关

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2024-09-18 DOI:10.1126/scitranslmed.adn4970
Zin Z. Khaing, Jannik Leyendecker, Jennifer N. Harmon, Sananthan Sivakanthan, Lindsay N. Cates, Jeffrey E. Hyde, Melissa Krueger, Robb W. Glenny, Matthew Bruce, Christoph P. Hofstetter
{"title":"大鼠和人类急性创伤性脊髓损伤后的灌注成像指标与损伤严重程度有关","authors":"Zin Z. Khaing,&nbsp;Jannik Leyendecker,&nbsp;Jennifer N. Harmon,&nbsp;Sananthan Sivakanthan,&nbsp;Lindsay N. Cates,&nbsp;Jeffrey E. Hyde,&nbsp;Melissa Krueger,&nbsp;Robb W. Glenny,&nbsp;Matthew Bruce,&nbsp;Christoph P. Hofstetter","doi":"10.1126/scitranslmed.adn4970","DOIUrl":null,"url":null,"abstract":"<div >Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans\",\"authors\":\"Zin Z. Khaing,&nbsp;Jannik Leyendecker,&nbsp;Jennifer N. Harmon,&nbsp;Sananthan Sivakanthan,&nbsp;Lindsay N. Cates,&nbsp;Jeffrey E. Hyde,&nbsp;Melissa Krueger,&nbsp;Robb W. Glenny,&nbsp;Matthew Bruce,&nbsp;Christoph P. Hofstetter\",\"doi\":\"10.1126/scitranslmed.adn4970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adn4970\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adn4970","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脊髓损伤(tSCI)会导致神经功能立即丧失,而在急性期很难预测恢复情况。在这项研究中,我们使用对比增强超声成像技术来量化创伤性脊髓损伤后急性期的椎管内血管破坏情况。在啮齿类动物胸椎创伤后脊髓损伤模型中,对比增强超声显示了灌注区的缺损,该缺损与损伤严重程度呈正相关,与损伤后 8 周的后肢运动功能呈负相关。脊髓灌注指数的计算方法是将损伤中心的造影剂流入量与损伤周边的造影剂流入量归一化。脊髓灌注指数随着损伤严重程度的增加而降低,并与损伤后8周的后肢运动功能呈正相关。术中对比增强超声成像的可行性在一组 27 例不同严重程度的急性 tSCI 患者(包括运动完全性和运动不完全性 tSCI)中进行了进一步测试。运动完全性和运动不完全性患者的灌注面积缺失和脊髓灌注指数均不同。此外,灌注面积缺损和脊髓灌注指数与入院时的损伤严重程度相关,并与6个月时的功能恢复程度相关。我们的数据表明,术中对比增强超声衍生指标与创伤后脊髓损伤的严重程度和慢性功能预后相关。需要进行更大规模的临床研究,以更好地评估所提出的对比增强超声生物标志物的可靠性及其预后能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans
Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19 Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice Monoclonal antibodies against the spike protein alter the endogenous humoral response to SARS-CoV-2 vaccination and infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1