煤油共生过程中氧化反应的微观结构变化与动力学分析

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-09-18 DOI:10.1007/s11053-024-10407-4
Lintao Hu, Hongqing Zhu, Binrui Li, Rui Li, Linhao Xie, Ruoyi Tao, Baolin Qu
{"title":"煤油共生过程中氧化反应的微观结构变化与动力学分析","authors":"Lintao Hu, Hongqing Zhu, Binrui Li, Rui Li, Linhao Xie, Ruoyi Tao, Baolin Qu","doi":"10.1007/s11053-024-10407-4","DOIUrl":null,"url":null,"abstract":"<p>During the coal mining process, fractures generated can lead to crude oil infiltrating into coal seams, forming coal–oil symbiosis (COS). The complex three-phase interaction of coal–oil–oxygen makes the mechanism of COS spontaneous combustion filled with uncertainties. This study utilized synchronous thermal analysis to analyze the physico-chemical behavior of raw coal and COS at different heating rates. Additionally, detailed characterization of their surface morphology and functional groups was conducted using scanning electron microscopy (SEM) and in situ FTIR technology. The findings suggest that the coverage of crude oil on the surface of coal inhibits the adsorption of oxygen by the coal, leading to the disappearance of the stage where COS absorbs oxygen and gains weight. Moreover, the continuous decline of –OH groups and aliphatic hydrocarbons in the later stages suggests that crude oil acts as a catalyst for combustion during the latter stages of the reaction. The Kissinger–Akahira–Sunose, Starink, and Flynn–Wall–Ozawa methods showed that the apparent activation energy of COS is 23.3 and 19.7% lower than that of raw coal in thermal decomposition and combustion stages, respectively.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"2 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural Changes and Kinetic Analysis of Oxidation Reaction in Coal–Oil Symbiosis\",\"authors\":\"Lintao Hu, Hongqing Zhu, Binrui Li, Rui Li, Linhao Xie, Ruoyi Tao, Baolin Qu\",\"doi\":\"10.1007/s11053-024-10407-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the coal mining process, fractures generated can lead to crude oil infiltrating into coal seams, forming coal–oil symbiosis (COS). The complex three-phase interaction of coal–oil–oxygen makes the mechanism of COS spontaneous combustion filled with uncertainties. This study utilized synchronous thermal analysis to analyze the physico-chemical behavior of raw coal and COS at different heating rates. Additionally, detailed characterization of their surface morphology and functional groups was conducted using scanning electron microscopy (SEM) and in situ FTIR technology. The findings suggest that the coverage of crude oil on the surface of coal inhibits the adsorption of oxygen by the coal, leading to the disappearance of the stage where COS absorbs oxygen and gains weight. Moreover, the continuous decline of –OH groups and aliphatic hydrocarbons in the later stages suggests that crude oil acts as a catalyst for combustion during the latter stages of the reaction. The Kissinger–Akahira–Sunose, Starink, and Flynn–Wall–Ozawa methods showed that the apparent activation energy of COS is 23.3 and 19.7% lower than that of raw coal in thermal decomposition and combustion stages, respectively.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10407-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10407-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在煤炭开采过程中,产生的裂缝会导致原油渗入煤层,形成煤油共生(COS)。煤、油、氧三相复杂的相互作用使得煤油共生自燃的机理充满了不确定性。本研究利用同步热分析方法分析了原煤和 COS 在不同加热速率下的物理化学行为。此外,还利用扫描电子显微镜(SEM)和原位傅立叶变换红外技术对它们的表面形态和官能团进行了详细表征。研究结果表明,原油在煤表面的覆盖抑制了煤对氧气的吸附,导致 COS 吸氧增重阶段的消失。此外,在后期阶段,-OH 基团和脂肪族碳氢化合物不断减少,这表明原油在反应的后期阶段起到了燃烧催化剂的作用。Kissinger-Akahira-Sunose 法、Starink 法和 Flynn-Wall-Ozawa 法表明,在热分解和燃烧阶段,COS 的表观活化能分别比原煤低 23.3% 和 19.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructural Changes and Kinetic Analysis of Oxidation Reaction in Coal–Oil Symbiosis

During the coal mining process, fractures generated can lead to crude oil infiltrating into coal seams, forming coal–oil symbiosis (COS). The complex three-phase interaction of coal–oil–oxygen makes the mechanism of COS spontaneous combustion filled with uncertainties. This study utilized synchronous thermal analysis to analyze the physico-chemical behavior of raw coal and COS at different heating rates. Additionally, detailed characterization of their surface morphology and functional groups was conducted using scanning electron microscopy (SEM) and in situ FTIR technology. The findings suggest that the coverage of crude oil on the surface of coal inhibits the adsorption of oxygen by the coal, leading to the disappearance of the stage where COS absorbs oxygen and gains weight. Moreover, the continuous decline of –OH groups and aliphatic hydrocarbons in the later stages suggests that crude oil acts as a catalyst for combustion during the latter stages of the reaction. The Kissinger–Akahira–Sunose, Starink, and Flynn–Wall–Ozawa methods showed that the apparent activation energy of COS is 23.3 and 19.7% lower than that of raw coal in thermal decomposition and combustion stages, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Petrophysical Characteristics of the Paleocene Zelten Formation in the Gialo Oil Field, Sirte Basin, Libya Research on Coal Reservoir Pore Structures: Progress, Current Status, and Advancing Lateritic Ni–Co Prospectivity Modeling in Eastern Australia Using an Enhanced Generative Adversarial Network and Positive-Unlabeled Bagging Risk-Based Optimization of Post-Blast Dig-Limits Incorporating Blast Movement and Grade Uncertainties with Multiple Destinations in Open-Pit Mines Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1