基于集合方法的测井数据储层孔隙度和渗透率评估:结合实验、模拟和现场工作数据的综合研究

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-09-18 DOI:10.1007/s11053-024-10402-9
Edwin E. Nyakilla, Sun Guanhua, Hao Hongliang, Grant Charles, Mouigni B. Nafouanti, Emanuel X. Ricky, Selemani N. Silingi, Elieneza N. Abelly, Eric R. Shanghvi, Safi Naqibulla, Mbega R. Ngata, Erasto Kasala, Melckzedeck Mgimba, Alaa Abdulmalik, Fatna A. Said, Mbula N. Nadege, Johnson J. Kasali, Li Dan
{"title":"基于集合方法的测井数据储层孔隙度和渗透率评估:结合实验、模拟和现场工作数据的综合研究","authors":"Edwin E. Nyakilla, Sun Guanhua, Hao Hongliang, Grant Charles, Mouigni B. Nafouanti, Emanuel X. Ricky, Selemani N. Silingi, Elieneza N. Abelly, Eric R. Shanghvi, Safi Naqibulla, Mbega R. Ngata, Erasto Kasala, Melckzedeck Mgimba, Alaa Abdulmalik, Fatna A. Said, Mbula N. Nadege, Johnson J. Kasali, Li Dan","doi":"10.1007/s11053-024-10402-9","DOIUrl":null,"url":null,"abstract":"<p>Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (<i>R</i><sup>2</sup>) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving <i>R</i><sup>2</sup> values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"36 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data\",\"authors\":\"Edwin E. Nyakilla, Sun Guanhua, Hao Hongliang, Grant Charles, Mouigni B. Nafouanti, Emanuel X. Ricky, Selemani N. Silingi, Elieneza N. Abelly, Eric R. Shanghvi, Safi Naqibulla, Mbega R. Ngata, Erasto Kasala, Melckzedeck Mgimba, Alaa Abdulmalik, Fatna A. Said, Mbula N. Nadege, Johnson J. Kasali, Li Dan\",\"doi\":\"10.1007/s11053-024-10402-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (<i>R</i><sup>2</sup>) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving <i>R</i><sup>2</sup> values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10402-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10402-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

渗透率和孔隙度是油藏特征描述的关键参数,用于了解油气流动行为。传统的实验室岩心分析非常耗时,而机器学习则成为了更高效、更准确估算的重要工具。本文利用支持向量机(SVM)、高斯过程回归(GPR)、多元分析和反向传播神经网络(BPNN)等方法,提出了一种用于孔隙度和渗透率估算的集合技术,称为自适应提升(AdaBoost)。性能评估指标包括均方根误差、均方误差和判定系数(R2),用于比较各种模型。结果表明,AdaBoost 在处理时间和准确性方面均优于 GPR、SVM 和 BPNN 模型,在训练过程中,渗透率和孔隙度的 R2 值分别达到 0.980 和 0.962,在测试过程中分别达到 0.960 和 0.951。这项研究突出表明,AdaBoost 是一种稳健、准确的技术,可以提高储层特征描述能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data

Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R2) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Petrophysical Characteristics of the Paleocene Zelten Formation in the Gialo Oil Field, Sirte Basin, Libya Research on Coal Reservoir Pore Structures: Progress, Current Status, and Advancing Lateritic Ni–Co Prospectivity Modeling in Eastern Australia Using an Enhanced Generative Adversarial Network and Positive-Unlabeled Bagging Risk-Based Optimization of Post-Blast Dig-Limits Incorporating Blast Movement and Grade Uncertainties with Multiple Destinations in Open-Pit Mines Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1