Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke
{"title":"揭示用于合成氨的液态铜-镓催化剂中的金属迁移率","authors":"Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke","doi":"10.1038/s41929-024-01219-z","DOIUrl":null,"url":null,"abstract":"The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst. The traditional Haber–Bosch process as well as recent alternative approaches based on photo- or electrocatalysis all rely on solid catalysts to convert nitrogen into ammonia. Here the authors disclose an effective method for the synthesis of this crucial commodity based on a Cu–Ga liquid metal catalyst instead.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis\",\"authors\":\"Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke\",\"doi\":\"10.1038/s41929-024-01219-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst. The traditional Haber–Bosch process as well as recent alternative approaches based on photo- or electrocatalysis all rely on solid catalysts to convert nitrogen into ammonia. Here the authors disclose an effective method for the synthesis of this crucial commodity based on a Cu–Ga liquid metal catalyst instead.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01219-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01219-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis
The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst. The traditional Haber–Bosch process as well as recent alternative approaches based on photo- or electrocatalysis all rely on solid catalysts to convert nitrogen into ammonia. Here the authors disclose an effective method for the synthesis of this crucial commodity based on a Cu–Ga liquid metal catalyst instead.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.