物理信息 DeepMRI:k 空间插值与热扩散

Zhuo-Xu Cui;Congcong Liu;Xiaohong Fan;Chentao Cao;Jing Cheng;Qingyong Zhu;Yuanyuan Liu;Sen Jia;Haifeng Wang;Yanjie Zhu;Yihang Zhou;Jianping Zhang;Qiegen Liu;Dong Liang
{"title":"物理信息 DeepMRI:k 空间插值与热扩散","authors":"Zhuo-Xu Cui;Congcong Liu;Xiaohong Fan;Chentao Cao;Jing Cheng;Qingyong Zhu;Yuanyuan Liu;Sen Jia;Haifeng Wang;Yanjie Zhu;Yihang Zhou;Jianping Zhang;Qiegen Liu;Dong Liang","doi":"10.1109/TMI.2024.3462988","DOIUrl":null,"url":null,"abstract":"Recently, diffusion models have shown considerable promise for MRI reconstruction. However, extensive experimentation has revealed that these models are prone to generating artifacts due to the inherent randomness involved in generating images from pure noise. To achieve more controlled image reconstruction, we reexamine the concept of interpolatable physical priors in k-space data, focusing specifically on the interpolation of high-frequency (HF) k-space data from low-frequency (LF) k-space data. Broadly, this insight drives a shift in the generation paradigm from random noise to a more deterministic approach grounded in the existing LF k-space data. Building on this, we first establish a relationship between the interpolation of HF k-space data from LF k-space data and the reverse heat diffusion process, providing a fundamental framework for designing diffusion models that generate missing HF data. To further improve reconstruction accuracy, we integrate a traditional physics-informed k-space interpolation model into our diffusion framework as a data fidelity term. Experimental validation using publicly available datasets demonstrates that our approach significantly surpasses traditional k-space interpolation methods, deep learning-based k-space interpolation techniques, and conventional diffusion models, particularly in HF regions. Finally, we assess the generalization performance of our model across various out-of-distribution datasets. Our code are available at \n<uri>https://github.com/ZhuoxuCui/Heat-Diffusion</uri>\n.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"43 10","pages":"3503-3520"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed DeepMRI: k-Space Interpolation Meets Heat Diffusion\",\"authors\":\"Zhuo-Xu Cui;Congcong Liu;Xiaohong Fan;Chentao Cao;Jing Cheng;Qingyong Zhu;Yuanyuan Liu;Sen Jia;Haifeng Wang;Yanjie Zhu;Yihang Zhou;Jianping Zhang;Qiegen Liu;Dong Liang\",\"doi\":\"10.1109/TMI.2024.3462988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, diffusion models have shown considerable promise for MRI reconstruction. However, extensive experimentation has revealed that these models are prone to generating artifacts due to the inherent randomness involved in generating images from pure noise. To achieve more controlled image reconstruction, we reexamine the concept of interpolatable physical priors in k-space data, focusing specifically on the interpolation of high-frequency (HF) k-space data from low-frequency (LF) k-space data. Broadly, this insight drives a shift in the generation paradigm from random noise to a more deterministic approach grounded in the existing LF k-space data. Building on this, we first establish a relationship between the interpolation of HF k-space data from LF k-space data and the reverse heat diffusion process, providing a fundamental framework for designing diffusion models that generate missing HF data. To further improve reconstruction accuracy, we integrate a traditional physics-informed k-space interpolation model into our diffusion framework as a data fidelity term. Experimental validation using publicly available datasets demonstrates that our approach significantly surpasses traditional k-space interpolation methods, deep learning-based k-space interpolation techniques, and conventional diffusion models, particularly in HF regions. Finally, we assess the generalization performance of our model across various out-of-distribution datasets. Our code are available at \\n<uri>https://github.com/ZhuoxuCui/Heat-Diffusion</uri>\\n.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"43 10\",\"pages\":\"3503-3520\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683732/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10683732/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,弥散模型在核磁共振成像重建方面显示出了相当大的前景。然而,大量实验表明,由于从纯噪声生成图像的固有随机性,这些模型容易产生伪影。为了实现更可控的图像重建,我们重新审视了 k 空间数据中可插值物理先验的概念,特别关注从低频 k 空间数据插值高频 k 空间数据。从广义上讲,这种洞察力促使生成范式从随机噪声转向以现有低频 k 空间数据为基础的更具确定性的方法。在此基础上,我们首先建立了从低频 k 空间数据插值高频 k 空间数据与反向热扩散过程之间的关系,为设计生成缺失高频数据的扩散模型提供了一个基本框架。为了进一步提高重建精度,我们将传统的物理信息 k 空间插值模型作为数据保真度项整合到我们的扩散框架中。使用公开数据集进行的实验验证表明,我们的方法明显优于传统的 k 空间插值方法、基于深度学习的 k 空间插值技术和传统的扩散模型,尤其是在高频区域。最后,我们评估了我们的模型在各种分布外数据集上的泛化性能。我们的代码见 https://github.com/ZhuoxuCui/Heat-Diffusion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-Informed DeepMRI: k-Space Interpolation Meets Heat Diffusion
Recently, diffusion models have shown considerable promise for MRI reconstruction. However, extensive experimentation has revealed that these models are prone to generating artifacts due to the inherent randomness involved in generating images from pure noise. To achieve more controlled image reconstruction, we reexamine the concept of interpolatable physical priors in k-space data, focusing specifically on the interpolation of high-frequency (HF) k-space data from low-frequency (LF) k-space data. Broadly, this insight drives a shift in the generation paradigm from random noise to a more deterministic approach grounded in the existing LF k-space data. Building on this, we first establish a relationship between the interpolation of HF k-space data from LF k-space data and the reverse heat diffusion process, providing a fundamental framework for designing diffusion models that generate missing HF data. To further improve reconstruction accuracy, we integrate a traditional physics-informed k-space interpolation model into our diffusion framework as a data fidelity term. Experimental validation using publicly available datasets demonstrates that our approach significantly surpasses traditional k-space interpolation methods, deep learning-based k-space interpolation techniques, and conventional diffusion models, particularly in HF regions. Finally, we assess the generalization performance of our model across various out-of-distribution datasets. Our code are available at https://github.com/ZhuoxuCui/Heat-Diffusion .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1