{"title":"浅准周期势中 Lieb-Liniger 气体的莫特跃迁:无序诱导的去焦化","authors":"Hepeng Yao, Luca Tanzi, Laurent Sanchez-Palencia, Thierry Giamarchi, Giovanni Modugno, Chiara D’Errico","doi":"10.1103/physrevlett.133.123401","DOIUrl":null,"url":null,"abstract":"Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder\",\"authors\":\"Hepeng Yao, Luca Tanzi, Laurent Sanchez-Palencia, Thierry Giamarchi, Giovanni Modugno, Chiara D’Errico\",\"doi\":\"10.1103/physrevlett.133.123401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.123401\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.123401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder
Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks