战略设计的 Ru(II) 复合物具有更强的 ROS 活性,可对耐多药生物膜产生强大的声动力效应

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-19 DOI:10.1021/acsami.4c11650
Yanling Wang, Lishi Luo, Tuotuo Zhang, Jun-Rui Hu, Huiling Wang, Feng Bao, Chonglu Li, Yao Sun, Junrong Li
{"title":"战略设计的 Ru(II) 复合物具有更强的 ROS 活性,可对耐多药生物膜产生强大的声动力效应","authors":"Yanling Wang, Lishi Luo, Tuotuo Zhang, Jun-Rui Hu, Huiling Wang, Feng Bao, Chonglu Li, Yao Sun, Junrong Li","doi":"10.1021/acsami.4c11650","DOIUrl":null,"url":null,"abstract":"Sonodynamic therapy (SDT) can generate reactive oxygen species (ROS) to combat multidrug-resistant biofilms, which pose significant challenges to human health. As the key to producing ROS in SDT, the design of sonosensitizers with optimal molecular structures for sufficient ROS generation and activity in complex biofilm matrix is essential. In this study, we propose a π-expansion strategy and synthesize a series of small-molecule metal Ru(II) complexes (<b>Ru1</b>–<b>Ru4</b>) as sonosensitizers (<b>Ru1</b>–<b>Ru4</b>) to enhance the efficacy of SDT. Among these complexes, <b>Ru4</b> demonstrates remarkable ROS generation capability (∼65.5-fold) that surpasses most commercial sonosensitizers (1.3- to 6.7-fold). Through catalyzing endogenous H<sub>2</sub>O<sub>2</sub> decomposition, <b>Ru4</b> facilitates the production of abundant O<sub>2</sub> as a resource for <sup>1</sup>O<sub>2</sub> and the generation of new ROS (i.e., <sup>•</sup>OH) for improving SDT. Furthermore, <b>Ru4</b> maintains the sustained ROS activity via consuming the interferences (e.g., glutathione) that react with ROS. Due to these unique advantages, <b>Ru4</b> exhibits potent biofilm eradication ability against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) both in vitro and in vivo, underscoring its potential use in clinical settings. This work introduces a new approach for designing effective sonosensitizers to eliminate biofilm infections, addressing a critical need in healthcare management.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategically Engineered Ru(II) Complexes with Enhanced ROS Activity Enabling Potent Sonodynamic Effect against Multidrug-Resistant Biofilms\",\"authors\":\"Yanling Wang, Lishi Luo, Tuotuo Zhang, Jun-Rui Hu, Huiling Wang, Feng Bao, Chonglu Li, Yao Sun, Junrong Li\",\"doi\":\"10.1021/acsami.4c11650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonodynamic therapy (SDT) can generate reactive oxygen species (ROS) to combat multidrug-resistant biofilms, which pose significant challenges to human health. As the key to producing ROS in SDT, the design of sonosensitizers with optimal molecular structures for sufficient ROS generation and activity in complex biofilm matrix is essential. In this study, we propose a π-expansion strategy and synthesize a series of small-molecule metal Ru(II) complexes (<b>Ru1</b>–<b>Ru4</b>) as sonosensitizers (<b>Ru1</b>–<b>Ru4</b>) to enhance the efficacy of SDT. Among these complexes, <b>Ru4</b> demonstrates remarkable ROS generation capability (∼65.5-fold) that surpasses most commercial sonosensitizers (1.3- to 6.7-fold). Through catalyzing endogenous H<sub>2</sub>O<sub>2</sub> decomposition, <b>Ru4</b> facilitates the production of abundant O<sub>2</sub> as a resource for <sup>1</sup>O<sub>2</sub> and the generation of new ROS (i.e., <sup>•</sup>OH) for improving SDT. Furthermore, <b>Ru4</b> maintains the sustained ROS activity via consuming the interferences (e.g., glutathione) that react with ROS. Due to these unique advantages, <b>Ru4</b> exhibits potent biofilm eradication ability against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) both in vitro and in vivo, underscoring its potential use in clinical settings. This work introduces a new approach for designing effective sonosensitizers to eliminate biofilm infections, addressing a critical need in healthcare management.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c11650\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11650","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

声动力疗法(SDT)可产生活性氧(ROS),以对抗对人类健康构成重大挑战的多重耐药生物膜。作为在声动力疗法中产生 ROS 的关键,设计具有最佳分子结构的声敏化剂至关重要,这样才能在复杂的生物膜基质中产生足够的 ROS 并发挥其活性。在本研究中,我们提出了一种π-扩展策略,并合成了一系列小分子金属 Ru(II) 复合物(Ru1-Ru4)作为声纳敏化剂(Ru1-Ru4),以增强 SDT 的功效。在这些配合物中,Ru4 具有显著的 ROS 生成能力(65.5 倍),超过了大多数商业声波敏化剂(1.3 至 6.7 倍)。通过催化内源性 H2O2 分解,Ru4 可产生丰富的 O2 作为 1O2 的资源,并产生新的 ROS(即 -OH)以改善 SDT。此外,Ru4 还能通过消耗与 ROS 发生反应的干扰物(如谷胱甘肽)来维持 ROS 的持续活性。由于这些独特的优势,Ru4 在体外和体内对耐甲氧西林金黄色葡萄球菌(MRSA)都表现出了强大的生物膜根除能力,突出了其在临床环境中的潜在用途。这项研究为设计消除生物膜感染的有效声波敏化剂引入了一种新方法,解决了医疗保健管理中的一个关键需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategically Engineered Ru(II) Complexes with Enhanced ROS Activity Enabling Potent Sonodynamic Effect against Multidrug-Resistant Biofilms
Sonodynamic therapy (SDT) can generate reactive oxygen species (ROS) to combat multidrug-resistant biofilms, which pose significant challenges to human health. As the key to producing ROS in SDT, the design of sonosensitizers with optimal molecular structures for sufficient ROS generation and activity in complex biofilm matrix is essential. In this study, we propose a π-expansion strategy and synthesize a series of small-molecule metal Ru(II) complexes (Ru1Ru4) as sonosensitizers (Ru1Ru4) to enhance the efficacy of SDT. Among these complexes, Ru4 demonstrates remarkable ROS generation capability (∼65.5-fold) that surpasses most commercial sonosensitizers (1.3- to 6.7-fold). Through catalyzing endogenous H2O2 decomposition, Ru4 facilitates the production of abundant O2 as a resource for 1O2 and the generation of new ROS (i.e., OH) for improving SDT. Furthermore, Ru4 maintains the sustained ROS activity via consuming the interferences (e.g., glutathione) that react with ROS. Due to these unique advantages, Ru4 exhibits potent biofilm eradication ability against methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo, underscoring its potential use in clinical settings. This work introduces a new approach for designing effective sonosensitizers to eliminate biofilm infections, addressing a critical need in healthcare management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Fluid Classification via the Dual Functionality of Moisture-Enabled Electricity Generation Enhanced by Deep Learning. In Situ Transition of Amorphous Carbon to Graphite-like Structures Using MXene as a Template for Fast and Long-Lasting Macrosuperlubricity Modular Assembly of Photoactive Lipid Nanoparticles on Red Blood Cells toward Enhanced Phototherapy Efficacy Superhydrophobic, Multifunctional, and Mechanically Durable Carbon Aerogel Composites for High-Performance Underwater Piezoresistive Sensing Titanium Surface Synergy: Strontium Incorporation and Controlled Disorder Nanotopography Optimize Osteoinduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1