645 和 731 纳米之间柔性有机晶体光波导的超宽调制和可逆重构

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-19 DOI:10.1002/anie.202417459
Quanliang Chen, Baolei Tang, Kaiqi Ye, Hanlin Hu, Hongyu Zhang
{"title":"645 和 731 纳米之间柔性有机晶体光波导的超宽调制和可逆重构","authors":"Quanliang Chen, Baolei Tang, Kaiqi Ye, Hanlin Hu, Hongyu Zhang","doi":"10.1002/anie.202417459","DOIUrl":null,"url":null,"abstract":"Flexible organic crystalline optical waveguides, i.e., delivering input or self-emit lights through various dynamic organic crystals, have attracted increasing attentions in the past decade. However, the modulation of waveguide outputs relies on chemical design and substituent modification, being time-consuming and laborious. Here we report an elastic organic crystal that displays long-distance light transducing capability up to 2.0 cm and ultra-wide modulation of crystalline optical waveguides between red (645 nm) and near infrared (731 nm) in both the pristine and the elastically bent states based on a pre-designed self-absorption effect. The flexible organic crystalline optical waveguides can be precisely and reversibly reconfigured by controlling irradiation point. In addition, deep red amplified spontaneous emissions (ASE) that are able to transduce through a 5.0 mm bent crystal with an ultra-low optical loss coefficient of 0.092 dB/mm has been attained. To the best of our knowledge, this is the first report of flexible organic ASE waveguides. The present study not only provides a simple yet effective strategy to remarkably modulate flexible organic crystalline optical waveguides but also demonstrates the superiority of laser over normal emission as flexible optical communication elements.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Wide Modulation and Reversible Reconfiguration of a Flexible Organic Crystalline Optical Waveguide Between 645 and 731 nm\",\"authors\":\"Quanliang Chen, Baolei Tang, Kaiqi Ye, Hanlin Hu, Hongyu Zhang\",\"doi\":\"10.1002/anie.202417459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible organic crystalline optical waveguides, i.e., delivering input or self-emit lights through various dynamic organic crystals, have attracted increasing attentions in the past decade. However, the modulation of waveguide outputs relies on chemical design and substituent modification, being time-consuming and laborious. Here we report an elastic organic crystal that displays long-distance light transducing capability up to 2.0 cm and ultra-wide modulation of crystalline optical waveguides between red (645 nm) and near infrared (731 nm) in both the pristine and the elastically bent states based on a pre-designed self-absorption effect. The flexible organic crystalline optical waveguides can be precisely and reversibly reconfigured by controlling irradiation point. In addition, deep red amplified spontaneous emissions (ASE) that are able to transduce through a 5.0 mm bent crystal with an ultra-low optical loss coefficient of 0.092 dB/mm has been attained. To the best of our knowledge, this is the first report of flexible organic ASE waveguides. The present study not only provides a simple yet effective strategy to remarkably modulate flexible organic crystalline optical waveguides but also demonstrates the superiority of laser over normal emission as flexible optical communication elements.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417459\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417459","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性有机晶体光波导,即通过各种动态有机晶体提供输入或自发光,在过去十年中受到越来越多的关注。然而,波导输出的调制依赖于化学设计和取代基修饰,费时费力。在此,我们报告了一种弹性有机晶体,它具有长达 2.0 厘米的长距离光传输能力,并且基于预先设计的自吸收效应,可在原始状态和弹性弯曲状态下对晶体光波导进行红外(645 纳米)和近红外(731 纳米)之间的超宽调制。这种柔性有机晶体光波导可通过控制照射点进行精确和可逆的重新配置。此外,我们还实现了深红色的放大自发辐射(ASE),它能够以 0.092 dB/mm 的超低光学损耗系数通过 5.0 mm 的弯曲晶体进行传输。据我们所知,这是第一份关于柔性有机 ASE 波导的报告。本研究不仅提供了一种简单而有效的策略来显著调制柔性有机晶体光波导,还证明了激光作为柔性光通信元件比普通发射的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Wide Modulation and Reversible Reconfiguration of a Flexible Organic Crystalline Optical Waveguide Between 645 and 731 nm
Flexible organic crystalline optical waveguides, i.e., delivering input or self-emit lights through various dynamic organic crystals, have attracted increasing attentions in the past decade. However, the modulation of waveguide outputs relies on chemical design and substituent modification, being time-consuming and laborious. Here we report an elastic organic crystal that displays long-distance light transducing capability up to 2.0 cm and ultra-wide modulation of crystalline optical waveguides between red (645 nm) and near infrared (731 nm) in both the pristine and the elastically bent states based on a pre-designed self-absorption effect. The flexible organic crystalline optical waveguides can be precisely and reversibly reconfigured by controlling irradiation point. In addition, deep red amplified spontaneous emissions (ASE) that are able to transduce through a 5.0 mm bent crystal with an ultra-low optical loss coefficient of 0.092 dB/mm has been attained. To the best of our knowledge, this is the first report of flexible organic ASE waveguides. The present study not only provides a simple yet effective strategy to remarkably modulate flexible organic crystalline optical waveguides but also demonstrates the superiority of laser over normal emission as flexible optical communication elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Confinement effects and manipulation strategies of nanocomposite membranes towards molecular separation. Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids Bioinspired synthesis of cucurbalsaminones B and C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1