2015 年至 2022 年西欧生态系统净初级生产力随历史干旱事件而发生的变化

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-09-18 DOI:10.1186/s13021-024-00279-9
Christopher Potter, Stephanie Pass
{"title":"2015 年至 2022 年西欧生态系统净初级生产力随历史干旱事件而发生的变化","authors":"Christopher Potter,&nbsp;Stephanie Pass","doi":"10.1186/s13021-024-00279-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.</p><h3>Results</h3><p>CASA model predictions from 2015 to 2022 for Western Europe revealed several notable high and low periods in growing season NPP totals in most countries of the region. For the total land coverage of France, Greece, Italy, Portugal, and Spain, 2018 was the year with the highest terrestrial plant growth, whereas 2017 and 2019 were the years with the highest summed NPP across the UK, Germany, and Croatia. For most of Western Europe, 2022 was the year predicted with the lowest summed plant growth. Annual precipitation in most countries of Western Europe gradually declined from a high average rate in 2018 to a low average precipitation level in 2022.</p><h3>Conclusions</h3><p>The CASA model predicted decreased growing season NPP of between − 25 and − 60% across all of Spain, southern France, and northern Italy from 2021 to 2022, and much of that plant production loss was detected in the important cropland regions of these nations.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00279-9","citationCount":"0","resultStr":"{\"title\":\"Changes in the net primary production of ecosystems across Western Europe from 2015 to 2022 in response to historic drought events\",\"authors\":\"Christopher Potter,&nbsp;Stephanie Pass\",\"doi\":\"10.1186/s13021-024-00279-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.</p><h3>Results</h3><p>CASA model predictions from 2015 to 2022 for Western Europe revealed several notable high and low periods in growing season NPP totals in most countries of the region. For the total land coverage of France, Greece, Italy, Portugal, and Spain, 2018 was the year with the highest terrestrial plant growth, whereas 2017 and 2019 were the years with the highest summed NPP across the UK, Germany, and Croatia. For most of Western Europe, 2022 was the year predicted with the lowest summed plant growth. Annual precipitation in most countries of Western Europe gradually declined from a high average rate in 2018 to a low average precipitation level in 2022.</p><h3>Conclusions</h3><p>The CASA model predicted decreased growing season NPP of between − 25 and − 60% across all of Spain, southern France, and northern Italy from 2021 to 2022, and much of that plant production loss was detected in the important cropland regions of these nations.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00279-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00279-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00279-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景当基于地面的水和碳通量测量不够详细,无法真实地捕捉地理变异性时,生态系统模型是进行气候相关变化评估的重要工具。卡内基-阿梅斯-斯坦福方法(CASA)就是这样一种基于每月植被覆盖的卫星观测数据来估算陆地生态系统净初级生产力(NPP)的模型。就法国、希腊、意大利、葡萄牙和西班牙的陆地总覆盖率而言,2018 年是陆地植物生长量最高的一年,而 2017 年和 2019 年则是英国、德国和克罗地亚的净生产力总和最高的一年。对于西欧大部分国家来说,2022 年是预测植物生长总和最低的一年。西欧大多数国家的年降水量从 2018 年的高平均降水量逐渐下降到 2022 年的低平均降水量水平。结论根据 CASA 模型预测,从 2021 年到 2022 年,西班牙全境、法国南部和意大利北部的生长季节净生产力将下降 - 25% 到 - 60%,其中大部分植物产量损失都出现在这些国家的重要耕地地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in the net primary production of ecosystems across Western Europe from 2015 to 2022 in response to historic drought events

Background

Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.

Results

CASA model predictions from 2015 to 2022 for Western Europe revealed several notable high and low periods in growing season NPP totals in most countries of the region. For the total land coverage of France, Greece, Italy, Portugal, and Spain, 2018 was the year with the highest terrestrial plant growth, whereas 2017 and 2019 were the years with the highest summed NPP across the UK, Germany, and Croatia. For most of Western Europe, 2022 was the year predicted with the lowest summed plant growth. Annual precipitation in most countries of Western Europe gradually declined from a high average rate in 2018 to a low average precipitation level in 2022.

Conclusions

The CASA model predicted decreased growing season NPP of between − 25 and − 60% across all of Spain, southern France, and northern Italy from 2021 to 2022, and much of that plant production loss was detected in the important cropland regions of these nations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China Slowly getting there: a review of country experience on estimating emissions and removals from forest degradation Methane cycling in temperate forests Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1