Ali S. Alshomrany, R. Bousbih, Muhammad Sajid, Muhammad Jamil, Junaid Munir, Mutasem Z. Bani-Fwaz, Majid S. Jabir, Hasan Majdi, Essam Elsayed Assem, Mohamed Shaban, Mubashir Nazar
{"title":"基于 DFT 对卤化物双包晶石 Cs2TlYF6(Y = Ag,Co)的热电和光伏响应进行调整","authors":"Ali S. Alshomrany, R. Bousbih, Muhammad Sajid, Muhammad Jamil, Junaid Munir, Mutasem Z. Bani-Fwaz, Majid S. Jabir, Hasan Majdi, Essam Elsayed Assem, Mohamed Shaban, Mubashir Nazar","doi":"10.1007/s10904-024-03187-0","DOIUrl":null,"url":null,"abstract":"<p>The novel material halide double perovskites Cs<sub>2</sub>TlYF<sub>6</sub> (Y = Ag, Co) are the potential candidates for thermoelectric and photovoltaic devices. The ground state and temperature dependent electronic transport properties are computed for Cs<sub>2</sub>TlYF<sub>6</sub> (Y = Ag, Co) by utilizing density functional theory as employed within WIEN2k package. The negative energy of formation and obtained optimization plots validated the stability of studied halides. The computed electronic properties (band structure, DOS) reveal the semiconductor behavior with band gap value of 1.95 eV and 3.55 eV for Cs<sub>2</sub>TlAgF<sub>6</sub> and Cs<sub>2</sub>TlCoF<sub>6</sub>, correspondingly. The optical features are illustrated in terms of dielectric function <span>\\(\\varepsilon \\left(\\omega \\right)\\)</span>, coefficient of optical absrobance, extinction coefficient, refractive index, and reflectivity. The optimal absorbance in the visible and UV spectrum of light, affirms the materials availability for optoelectronic devices. Thermoelectric characteristics exhibit maximum ZT value, higher Seebeck coefficients and lower thermal conductivity. A ZT of 1.46 at 300 K is attained for Cs<sub>2</sub>TlCoF<sub>6</sub>, while 0.74 is achieved for Cs<sub>2</sub>TlAgF<sub>6</sub>. Presented theoretical simulations indicate that the explored materials can of potential usage in renewable energy fields.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT-Based Tailoring of the Thermoelectric and Photovoltaic Response of the Halide Double Perovskite Cs2TlYF6 (Y = Ag, Co)\",\"authors\":\"Ali S. Alshomrany, R. Bousbih, Muhammad Sajid, Muhammad Jamil, Junaid Munir, Mutasem Z. Bani-Fwaz, Majid S. Jabir, Hasan Majdi, Essam Elsayed Assem, Mohamed Shaban, Mubashir Nazar\",\"doi\":\"10.1007/s10904-024-03187-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The novel material halide double perovskites Cs<sub>2</sub>TlYF<sub>6</sub> (Y = Ag, Co) are the potential candidates for thermoelectric and photovoltaic devices. The ground state and temperature dependent electronic transport properties are computed for Cs<sub>2</sub>TlYF<sub>6</sub> (Y = Ag, Co) by utilizing density functional theory as employed within WIEN2k package. The negative energy of formation and obtained optimization plots validated the stability of studied halides. The computed electronic properties (band structure, DOS) reveal the semiconductor behavior with band gap value of 1.95 eV and 3.55 eV for Cs<sub>2</sub>TlAgF<sub>6</sub> and Cs<sub>2</sub>TlCoF<sub>6</sub>, correspondingly. The optical features are illustrated in terms of dielectric function <span>\\\\(\\\\varepsilon \\\\left(\\\\omega \\\\right)\\\\)</span>, coefficient of optical absrobance, extinction coefficient, refractive index, and reflectivity. The optimal absorbance in the visible and UV spectrum of light, affirms the materials availability for optoelectronic devices. Thermoelectric characteristics exhibit maximum ZT value, higher Seebeck coefficients and lower thermal conductivity. A ZT of 1.46 at 300 K is attained for Cs<sub>2</sub>TlCoF<sub>6</sub>, while 0.74 is achieved for Cs<sub>2</sub>TlAgF<sub>6</sub>. Presented theoretical simulations indicate that the explored materials can of potential usage in renewable energy fields.</p>\",\"PeriodicalId\":639,\"journal\":{\"name\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic and Organometallic Polymers and Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10904-024-03187-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03187-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
DFT-Based Tailoring of the Thermoelectric and Photovoltaic Response of the Halide Double Perovskite Cs2TlYF6 (Y = Ag, Co)
The novel material halide double perovskites Cs2TlYF6 (Y = Ag, Co) are the potential candidates for thermoelectric and photovoltaic devices. The ground state and temperature dependent electronic transport properties are computed for Cs2TlYF6 (Y = Ag, Co) by utilizing density functional theory as employed within WIEN2k package. The negative energy of formation and obtained optimization plots validated the stability of studied halides. The computed electronic properties (band structure, DOS) reveal the semiconductor behavior with band gap value of 1.95 eV and 3.55 eV for Cs2TlAgF6 and Cs2TlCoF6, correspondingly. The optical features are illustrated in terms of dielectric function \(\varepsilon \left(\omega \right)\), coefficient of optical absrobance, extinction coefficient, refractive index, and reflectivity. The optimal absorbance in the visible and UV spectrum of light, affirms the materials availability for optoelectronic devices. Thermoelectric characteristics exhibit maximum ZT value, higher Seebeck coefficients and lower thermal conductivity. A ZT of 1.46 at 300 K is attained for Cs2TlCoF6, while 0.74 is achieved for Cs2TlAgF6. Presented theoretical simulations indicate that the explored materials can of potential usage in renewable energy fields.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.