Khanh V. Doan, Timothy S. Luongo, Thato T. Ts’olo, Won Dong Lee, David W. Frederick, Sarmistha Mukherjee, Gabriel K. Adzika, Caroline E. Perry, Ryan B. Gaspar, Nicole Walker, Megan C. Blair, Nicole Bye, James G. Davis, Corey D. Holman, Qingwei Chu, Lin Wang, Joshua D. Rabinowitz, Daniel P. Kelly, Thomas P. Cappola, Kenneth B. Margulies, Joseph A. Baur
{"title":"小鼠心脏的 NAD+ 缺乏会在生物能受损之前导致肥厚型心肌病和心律失常。","authors":"Khanh V. Doan, Timothy S. Luongo, Thato T. Ts’olo, Won Dong Lee, David W. Frederick, Sarmistha Mukherjee, Gabriel K. Adzika, Caroline E. Perry, Ryan B. Gaspar, Nicole Walker, Megan C. Blair, Nicole Bye, James G. Davis, Corey D. Holman, Qingwei Chu, Lin Wang, Joshua D. Rabinowitz, Daniel P. Kelly, Thomas P. Cappola, Kenneth B. Margulies, Joseph A. Baur","doi":"10.1038/s44161-024-00542-9","DOIUrl":null,"url":null,"abstract":"Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics. Doan et al. show that loss of cardiac NAD+ is sufficient to drive metabolic derangements, hypertrophic remodeling and lethal arrhythmias in adult mouse hearts, despite maintenance of ejection fraction and bioenergetics.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1236-1248"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac NAD+ depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics\",\"authors\":\"Khanh V. Doan, Timothy S. Luongo, Thato T. Ts’olo, Won Dong Lee, David W. Frederick, Sarmistha Mukherjee, Gabriel K. Adzika, Caroline E. Perry, Ryan B. Gaspar, Nicole Walker, Megan C. Blair, Nicole Bye, James G. Davis, Corey D. Holman, Qingwei Chu, Lin Wang, Joshua D. Rabinowitz, Daniel P. Kelly, Thomas P. Cappola, Kenneth B. Margulies, Joseph A. Baur\",\"doi\":\"10.1038/s44161-024-00542-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics. Doan et al. show that loss of cardiac NAD+ is sufficient to drive metabolic derangements, hypertrophic remodeling and lethal arrhythmias in adult mouse hearts, despite maintenance of ejection fraction and bioenergetics.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 10\",\"pages\":\"1236-1248\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00542-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00542-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Cardiac NAD+ depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics. Doan et al. show that loss of cardiac NAD+ is sufficient to drive metabolic derangements, hypertrophic remodeling and lethal arrhythmias in adult mouse hearts, despite maintenance of ejection fraction and bioenergetics.