首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Implications and limitations of the CLEAR-SYNERGY trial for the use of low-dose colchicine in cardiovascular disease.
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-24 DOI: 10.1038/s44161-024-00600-2
Ashish Misra, Peter J Psaltis, Amandeep Rashid Mondal, Adam J Nelson, Stefan Mark Nidorf
{"title":"Implications and limitations of the CLEAR-SYNERGY trial for the use of low-dose colchicine in cardiovascular disease.","authors":"Ashish Misra, Peter J Psaltis, Amandeep Rashid Mondal, Adam J Nelson, Stefan Mark Nidorf","doi":"10.1038/s44161-024-00600-2","DOIUrl":"https://doi.org/10.1038/s44161-024-00600-2","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial NAD+ transporter SLC25A51 linked to human aortic disease.
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-22 DOI: 10.1038/s44161-024-00599-6
Gabriel K Adzika, Ricardo A Velázquez Aponte, Joseph A Baur
{"title":"Mitochondrial NAD<sup>+</sup> transporter SLC25A51 linked to human aortic disease.","authors":"Gabriel K Adzika, Ricardo A Velázquez Aponte, Joseph A Baur","doi":"10.1038/s44161-024-00599-6","DOIUrl":"https://doi.org/10.1038/s44161-024-00599-6","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering and targeting mitochondrial loss in NOTCH1-related aortic aneurysm.
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-22 DOI: 10.1038/s44161-025-00607-3
{"title":"Discovering and targeting mitochondrial loss in NOTCH1-related aortic aneurysm.","authors":"","doi":"10.1038/s44161-025-00607-3","DOIUrl":"https://doi.org/10.1038/s44161-025-00607-3","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial NAD+ deficiency in vascular smooth muscle impairs collagen III turnover to trigger thoracic and abdominal aortic aneurysm.
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-22 DOI: 10.1038/s44161-024-00606-w
Jingjing Zhang, Yuyi Tang, Shan Zhang, Zhuxin Xie, Wenrui Ma, Shaowen Liu, Yixuan Fang, Shufen Zheng, Ce Huang, Guoquan Yan, Mieradilijiang Abudupataer, Yue Xin, Jingqiao Zhu, Wenjing Han, Weizhong Wang, Fenglin Shen, Hao Lai, Yang Liu, Dan Ye, Fa-Xing Yu, Yanhui Xu, Cuiping Pan, Chunsheng Wang, Kai Zhu, Weijia Zhang

Thoracic and abdominal aortic aneurysm poses a substantial mortality risk in adults, yet many of its underlying factors remain unidentified. Here, we identify mitochondrial nicotinamide adenine dinucleotide (NAD)⁺ deficiency as a causal factor for the development of aortic aneurysm. Multiomics analysis of 150 surgical aortic specimens indicated impaired NAD+ salvage and mitochondrial transport in human thoracic aortic aneurysm, with expression of the NAD+ transporter SLC25A51 inversely correlating with disease severity and postoperative progression. Genome-wide gene-based association analysis further linked low SLC25A51 expression to risk of aortic aneurysm and dissection. In mouse models, smooth muscle-specific knockout of Nampt, Nmnat1, Nmnat3, Slc25a51, Nadk2 and Aldh18a1, genes involved in NAD+ salvage and transport, induced aortic aneurysm, with Slc25a51 deletion producing the most severe effects. Using these models, we suggest a mechanism that may explain the disease pathogenesis: the production of type III procollagen during aortic medial matrix turnover imposes a high demand for proline, an essential amino acid component of collagen. Deficiency in the mitochondrial NAD⁺ pool, regulated by NAD⁺ salvage and transport, hinders proline biosynthesis in mitochondria, contributing to thoracic and abdominal aortic aneurysm.

{"title":"Mitochondrial NAD<sup>+</sup> deficiency in vascular smooth muscle impairs collagen III turnover to trigger thoracic and abdominal aortic aneurysm.","authors":"Jingjing Zhang, Yuyi Tang, Shan Zhang, Zhuxin Xie, Wenrui Ma, Shaowen Liu, Yixuan Fang, Shufen Zheng, Ce Huang, Guoquan Yan, Mieradilijiang Abudupataer, Yue Xin, Jingqiao Zhu, Wenjing Han, Weizhong Wang, Fenglin Shen, Hao Lai, Yang Liu, Dan Ye, Fa-Xing Yu, Yanhui Xu, Cuiping Pan, Chunsheng Wang, Kai Zhu, Weijia Zhang","doi":"10.1038/s44161-024-00606-w","DOIUrl":"https://doi.org/10.1038/s44161-024-00606-w","url":null,"abstract":"<p><p>Thoracic and abdominal aortic aneurysm poses a substantial mortality risk in adults, yet many of its underlying factors remain unidentified. Here, we identify mitochondrial nicotinamide adenine dinucleotide (NAD)⁺ deficiency as a causal factor for the development of aortic aneurysm. Multiomics analysis of 150 surgical aortic specimens indicated impaired NAD<sup>+</sup> salvage and mitochondrial transport in human thoracic aortic aneurysm, with expression of the NAD<sup>+</sup> transporter SLC25A51 inversely correlating with disease severity and postoperative progression. Genome-wide gene-based association analysis further linked low SLC25A51 expression to risk of aortic aneurysm and dissection. In mouse models, smooth muscle-specific knockout of Nampt, Nmnat1, Nmnat3, Slc25a51, Nadk2 and Aldh18a1, genes involved in NAD<sup>+</sup> salvage and transport, induced aortic aneurysm, with Slc25a51 deletion producing the most severe effects. Using these models, we suggest a mechanism that may explain the disease pathogenesis: the production of type III procollagen during aortic medial matrix turnover imposes a high demand for proline, an essential amino acid component of collagen. Deficiency in the mitochondrial NAD⁺ pool, regulated by NAD⁺ salvage and transport, hinders proline biosynthesis in mitochondria, contributing to thoracic and abdominal aortic aneurysm.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The clinical promise of 18F-flurpiridaz PET imaging heralds a new frontier in the diagnosis and management of coronary artery disease 18F-flurpiridaz PET成像的临床前景预示着冠状动脉疾病诊断和治疗的新前沿
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-17 DOI: 10.1038/s44161-024-00587-w
René R. Sevag Packard
The PET radiotracer 18F-flurpiridaz has undergone rigorous clinical testing and gained FDA approval for the evaluation of coronary artery disease. Its unique properties suggest 18F-flurpiridaz has the potential to transform the field of nuclear myocardial perfusion imaging and blood flow quantification, with far-reaching effects on cardiovascular care.
PET示踪剂18F-flurpiridaz经过了严格的临床测试,并获得了FDA批准用于评估冠状动脉疾病。其独特的性质表明,18f -氟吡达兹有可能改变核心肌灌注成像和血流量化领域,对心血管保健产生深远的影响。
{"title":"The clinical promise of 18F-flurpiridaz PET imaging heralds a new frontier in the diagnosis and management of coronary artery disease","authors":"René R. Sevag Packard","doi":"10.1038/s44161-024-00587-w","DOIUrl":"10.1038/s44161-024-00587-w","url":null,"abstract":"The PET radiotracer 18F-flurpiridaz has undergone rigorous clinical testing and gained FDA approval for the evaluation of coronary artery disease. Its unique properties suggest 18F-flurpiridaz has the potential to transform the field of nuclear myocardial perfusion imaging and blood flow quantification, with far-reaching effects on cardiovascular care.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"1-4"},"PeriodicalIF":9.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly conserved PIWI-interacting RNA CRAPIR antagonizes PA2G4-mediated NF110–NF45 disassembly to promote heart regeneration in mice 高度保守的piwi相互作用RNA CRAPIR可拮抗pa2g4介导的NF110-NF45分解,促进小鼠心脏再生
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-15 DOI: 10.1038/s44161-024-00592-z
Wenya Ma, Hongyang Chen, Yanan Tian, Wei Huang, Zhongyu Ren, Jianglong Li, Qimeng Ouyang, Yu Hu, Xin Wang, Haoyu Ji, Xu Liu, Yu Liu, XiuXiu Wang, Yining Liu, Ye Tian, Faqian Li, Baofeng Yang, Ning Wang, Benzhi Cai
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential. Conversely, overexpression of CRAPIR promotes cardiomyocyte proliferation, reduces infarct size and improves heart function after myocardial infarction. Mechanistically, CRAPIR promotes cardiomyocyte proliferation by competing with NF110 for binding to the RNA-binding protein PA2G4, thereby preventing the interaction of PA2G4 with the NF110–NF45 heterodimer and reducing NF110 degradation. The ability of CRAPIR to promote proliferation was confirmed in human embryonic stem cell-derived cardiomyocytes. Notably, CRAPIR serum levels are lower in individuals with ischemic heart disease and negatively correlate with levels of N-terminal pro-brain natriuretic peptide. These findings position CRAPIR both as a potential diagnostic marker for cardiac injury and as a therapeutic target for heart regeneration through the PA2G4–NF110–NF45 signaling axis. Ma et al. identify a highly conserved PIWI-interacting RNA CRAPIR, as a key regulator of cardiomyocyte proliferation and heart repair after myocardial infarction through the PA2G4–NF110–NF45 signaling axis.
靶向心肌细胞周期是一种很有前途的心脏损伤修复策略。在这里,我们确定了心脏再生相关的piwi相互作用RNA (CRAPIR)作为心肌细胞增殖的调节因子。基因消融或安他哥莫介导的小鼠CRAPIR的下调会损害心肌细胞增殖并降低心脏再生潜能。相反,CRAPIR过表达可促进心肌细胞增殖,减少梗死面积,改善心肌梗死后心功能。从机制上讲,CRAPIR通过与NF110竞争结合rna结合蛋白PA2G4来促进心肌细胞增殖,从而阻止PA2G4与NF110 - nf45异源二聚体的相互作用,减少NF110的降解。在人胚胎干细胞来源的心肌细胞中证实了CRAPIR促进增殖的能力。值得注意的是,缺血性心脏病患者的CRAPIR血清水平较低,并与n端脑利钠肽前体水平呈负相关。这些发现将CRAPIR定位为心脏损伤的潜在诊断标志物,并通过PA2G4-NF110-NF45信号轴作为心脏再生的治疗靶点。Ma等人发现一种高度保守的piwi相互作用RNA CRAPIR,通过PA2G4-NF110-NF45信号轴,作为心肌细胞增殖和心肌梗死后心脏修复的关键调节因子。
{"title":"The highly conserved PIWI-interacting RNA CRAPIR antagonizes PA2G4-mediated NF110–NF45 disassembly to promote heart regeneration in mice","authors":"Wenya Ma,&nbsp;Hongyang Chen,&nbsp;Yanan Tian,&nbsp;Wei Huang,&nbsp;Zhongyu Ren,&nbsp;Jianglong Li,&nbsp;Qimeng Ouyang,&nbsp;Yu Hu,&nbsp;Xin Wang,&nbsp;Haoyu Ji,&nbsp;Xu Liu,&nbsp;Yu Liu,&nbsp;XiuXiu Wang,&nbsp;Yining Liu,&nbsp;Ye Tian,&nbsp;Faqian Li,&nbsp;Baofeng Yang,&nbsp;Ning Wang,&nbsp;Benzhi Cai","doi":"10.1038/s44161-024-00592-z","DOIUrl":"10.1038/s44161-024-00592-z","url":null,"abstract":"Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential. Conversely, overexpression of CRAPIR promotes cardiomyocyte proliferation, reduces infarct size and improves heart function after myocardial infarction. Mechanistically, CRAPIR promotes cardiomyocyte proliferation by competing with NF110 for binding to the RNA-binding protein PA2G4, thereby preventing the interaction of PA2G4 with the NF110–NF45 heterodimer and reducing NF110 degradation. The ability of CRAPIR to promote proliferation was confirmed in human embryonic stem cell-derived cardiomyocytes. Notably, CRAPIR serum levels are lower in individuals with ischemic heart disease and negatively correlate with levels of N-terminal pro-brain natriuretic peptide. These findings position CRAPIR both as a potential diagnostic marker for cardiac injury and as a therapeutic target for heart regeneration through the PA2G4–NF110–NF45 signaling axis. Ma et al. identify a highly conserved PIWI-interacting RNA CRAPIR, as a key regulator of cardiomyocyte proliferation and heart repair after myocardial infarction through the PA2G4–NF110–NF45 signaling axis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"102-118"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powering up piRNAs for heart regeneration 为心脏再生激活pirna
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-15 DOI: 10.1038/s44161-024-00590-1
Thierry Pedrazzini
Heart regeneration after tissue injury depends on the proliferation of existing cardiomyocytes. Manipulating the non-coding transcriptome holds promise for the therapeutic induction of cardiomyocyte proliferation in the damaged human heart. A study now demonstrates that piRNAs have key roles in this regenerative process.
组织损伤后的心脏再生依赖于现有心肌细胞的增殖。操纵非编码转录组有望在受损的人类心脏中治疗性诱导心肌细胞增殖。现在的一项研究表明,pirna在这一再生过程中起着关键作用。
{"title":"Powering up piRNAs for heart regeneration","authors":"Thierry Pedrazzini","doi":"10.1038/s44161-024-00590-1","DOIUrl":"10.1038/s44161-024-00590-1","url":null,"abstract":"Heart regeneration after tissue injury depends on the proliferation of existing cardiomyocytes. Manipulating the non-coding transcriptome holds promise for the therapeutic induction of cardiomyocyte proliferation in the damaged human heart. A study now demonstrates that piRNAs have key roles in this regenerative process.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"13-14"},"PeriodicalIF":9.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice. 纠正线粒体丢失可减轻小鼠notch1相关主动脉病变。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-14 DOI: 10.1038/s44161-024-00603-z
Yuyi Tang, Jingjing Zhang, Yixuan Fang, Kai Zhu, Jingqiao Zhu, Ce Huang, Zhuxin Xie, Shan Zhang, Wenrui Ma, Guoquan Yan, Shaowen Liu, Xin Liu, Wenjing Han, Yue Xin, Chenxi Yang, Mieradilijiang Abudupataer, Peiyun Zhou, Chenxi He, Hao Lai, Chunsheng Wang, Yang Liu, Fei Lan, Dan Ye, Fa-Xing Yu, Yanhui Xu, Weijia Zhang

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection. These changes are accompanied by decreased expression of MFN1/2 and TFAM, mirroring findings in human patients. SMC-specific deletion of Mfn1 and/or Mfn2 genes recapitulates the aortopathy seen in Notch1-deficient mice. Prophylactic or therapeutic approaches aimed at increasing mitochondrial DNA copy number, either through AAV-mediated overexpression of Mfn1/2 or oral treatment with mitofusion activators teriflunomide or leflunomide, help mitigate or slow the progression of aortopathy in SMC-Notch1-/- mice. Our findings provide a molecular framework for exploring pharmacological interventions to restore mitochondrial function in NOTCH1-related aortopathy.

NOTCH1的功能缺失突变先前与胸主动脉病变有关,这是一种非手术治疗选择有限的疾病。基于临床蛋白质组学分析,我们假设主动脉平滑肌细胞(SMCs)的线粒体融合和生物发生对于调节notch1相关主动脉病变的进展至关重要。在这里,我们证明了smc特异性Notch1敲除小鼠出现主动脉病理,包括硬化、扩张和局灶性夹层。这些变化伴随着MFN1/2和TFAM的表达降低,与人类患者的发现相一致。smc特异性的Mfn1和/或Mfn2基因缺失再现了notch1缺陷小鼠的主动脉病变。通过aav介导的Mfn1/2过表达或口服线粒体融合激活剂teri氟米特或来氟米特,旨在增加线粒体DNA拷贝数的预防性或治疗性方法有助于减轻或减缓SMC-Notch1-/-小鼠主动脉病变的进展。我们的研究结果为探索药物干预恢复notch1相关主动脉病变的线粒体功能提供了一个分子框架。
{"title":"Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.","authors":"Yuyi Tang, Jingjing Zhang, Yixuan Fang, Kai Zhu, Jingqiao Zhu, Ce Huang, Zhuxin Xie, Shan Zhang, Wenrui Ma, Guoquan Yan, Shaowen Liu, Xin Liu, Wenjing Han, Yue Xin, Chenxi Yang, Mieradilijiang Abudupataer, Peiyun Zhou, Chenxi He, Hao Lai, Chunsheng Wang, Yang Liu, Fei Lan, Dan Ye, Fa-Xing Yu, Yanhui Xu, Weijia Zhang","doi":"10.1038/s44161-024-00603-z","DOIUrl":"10.1038/s44161-024-00603-z","url":null,"abstract":"<p><p>Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection. These changes are accompanied by decreased expression of MFN1/2 and TFAM, mirroring findings in human patients. SMC-specific deletion of Mfn1 and/or Mfn2 genes recapitulates the aortopathy seen in Notch1-deficient mice. Prophylactic or therapeutic approaches aimed at increasing mitochondrial DNA copy number, either through AAV-mediated overexpression of Mfn1/2 or oral treatment with mitofusion activators teriflunomide or leflunomide, help mitigate or slow the progression of aortopathy in SMC-Notch1<sup>-/-</sup> mice. Our findings provide a molecular framework for exploring pharmacological interventions to restore mitochondrial function in NOTCH1-related aortopathy.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IGFBP6 contributes to vascular resilience. IGFBP6有助于血管恢复。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-10 DOI: 10.1038/s44161-024-00597-8
Martin A Schwartz
{"title":"IGFBP6 contributes to vascular resilience.","authors":"Martin A Schwartz","doi":"10.1038/s44161-024-00597-8","DOIUrl":"https://doi.org/10.1038/s44161-024-00597-8","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial IGFBP6 suppresses vascular inflammation and atherosclerosis. 内皮IGFBP6抑制血管炎症和动脉粥样硬化。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-10 DOI: 10.1038/s44161-024-00591-0
Meiming Su, Wenqi Zhao, Hui Jiang, Yaping Zhao, Zhaopeng Liao, Zhenghong Liu, Mengyun Xu, Shanshan Jiang, Lili Wu, Yi Yang, Zhihua Wang, Zhutian Zeng, Yun Fang, Chaojun Tang, Clint L Miller, Paul C Evans, Li Wang, Maciej Banach, Hanjoong Jo, Bradford C Berk, Stefan Offermanns, Yu Huang, Junbo Ge, Suowen Xu, Jianping Weng

Beyond dyslipidemia, inflammation contributes to the development of atherosclerosis. However, intrinsic factors that counteract vascular inflammation and atherosclerosis remain scarce. Here we identify insulin-like growth factor binding protein 6 (IGFBP6) as a homeostasis-associated molecule that restrains endothelial inflammation and atherosclerosis. IGFBP6 levels are significantly reduced in human atherosclerotic arteries and patient serum. Reduction of IGFBP6 in human endothelial cells by siRNA increases inflammatory molecule expression and monocyte adhesion. Conversely, pro-inflammatory effects mediated by disturbed flow (DF) and tumor necrosis factor (TNF) are reversed by IGFBP6 overexpression. Mechanistic investigations further reveal that IGFBP6 executes anti-inflammatory effects directly through the major vault protein (MVP)-c-Jun N-terminal kinase (JNK)/nuclear factor kappa B (NF-κB) signaling axis. Finally, IGFBP6-deficient mice show aggravated diet- and DF-induced atherosclerosis, whereas endothelial-cell-specific IGFBP6-overexpressing mice protect against atherosclerosis. Based on these findings, we propose that reduction of endothelial IGFBP6 is a predisposing factor in vascular inflammation and atherosclerosis, which can be therapeutically targeted.

除了血脂异常,炎症还会导致动脉粥样硬化。然而,对抗血管炎症和动脉粥样硬化的内在因素仍然很少。在这里,我们发现胰岛素样生长因子结合蛋白6 (IGFBP6)是一种抑制内皮炎症和动脉粥样硬化的体内平衡相关分子。IGFBP6水平在人动脉粥样硬化动脉和患者血清中显著降低。通过siRNA减少人内皮细胞中的IGFBP6增加炎症分子表达和单核细胞粘附。相反,由血流紊乱(DF)和肿瘤坏死因子(TNF)介导的促炎作用被IGFBP6过表达逆转。机制研究进一步揭示IGFBP6直接通过主要拱顶蛋白(MVP)-c-Jun n -末端激酶(JNK)/核因子κB (NF-κB)信号轴发挥抗炎作用。最后,igfbp6缺陷小鼠表现出饮食和df诱导的动脉粥样硬化加重,而内皮细胞特异性igfbp6过表达小鼠则对动脉粥样硬化有保护作用。基于这些发现,我们提出内皮细胞IGFBP6的减少是血管炎症和动脉粥样硬化的一个易感因素,可以作为治疗目标。
{"title":"Endothelial IGFBP6 suppresses vascular inflammation and atherosclerosis.","authors":"Meiming Su, Wenqi Zhao, Hui Jiang, Yaping Zhao, Zhaopeng Liao, Zhenghong Liu, Mengyun Xu, Shanshan Jiang, Lili Wu, Yi Yang, Zhihua Wang, Zhutian Zeng, Yun Fang, Chaojun Tang, Clint L Miller, Paul C Evans, Li Wang, Maciej Banach, Hanjoong Jo, Bradford C Berk, Stefan Offermanns, Yu Huang, Junbo Ge, Suowen Xu, Jianping Weng","doi":"10.1038/s44161-024-00591-0","DOIUrl":"10.1038/s44161-024-00591-0","url":null,"abstract":"<p><p>Beyond dyslipidemia, inflammation contributes to the development of atherosclerosis. However, intrinsic factors that counteract vascular inflammation and atherosclerosis remain scarce. Here we identify insulin-like growth factor binding protein 6 (IGFBP6) as a homeostasis-associated molecule that restrains endothelial inflammation and atherosclerosis. IGFBP6 levels are significantly reduced in human atherosclerotic arteries and patient serum. Reduction of IGFBP6 in human endothelial cells by siRNA increases inflammatory molecule expression and monocyte adhesion. Conversely, pro-inflammatory effects mediated by disturbed flow (DF) and tumor necrosis factor (TNF) are reversed by IGFBP6 overexpression. Mechanistic investigations further reveal that IGFBP6 executes anti-inflammatory effects directly through the major vault protein (MVP)-c-Jun N-terminal kinase (JNK)/nuclear factor kappa B (NF-κB) signaling axis. Finally, IGFBP6-deficient mice show aggravated diet- and DF-induced atherosclerosis, whereas endothelial-cell-specific IGFBP6-overexpressing mice protect against atherosclerosis. Based on these findings, we propose that reduction of endothelial IGFBP6 is a predisposing factor in vascular inflammation and atherosclerosis, which can be therapeutically targeted.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1