K. Thejasree, M. L. Aparna, Tapan Kumar Ghosh, Vineet Mishra, K. T. Ramakrishna Reddy, G. Ranga Rao
{"title":"用于超级电容器电极的球磨 MoO3@NiCo2Se4 复合材料","authors":"K. Thejasree, M. L. Aparna, Tapan Kumar Ghosh, Vineet Mishra, K. T. Ramakrishna Reddy, G. Ranga Rao","doi":"10.1007/s10008-024-06073-4","DOIUrl":null,"url":null,"abstract":"<p>Ternary selenides are an attractive choice for supercapacitor electrode materials owing to their multiple oxidation states, higher electronic conductivity, and better electro activity. However, to attain improved charge storage performance, the electrode materials must be strategically tailored as nanostructured hybrid composites. Herein, we experimentally explore the electrochemical charge storage characteristics of MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> nanostructure. MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> is synthesized via hydrothermal route coupled with ball milling, varying the milling duration from 0 to 4 h. The MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> composite obtained by 4 h ball milling process produced well mixed polymeric molybdates and NiCo<sub>2</sub>Se<sub>4</sub> nanostructures with highest surface area of 5.9 m<sup>2</sup> g<sup>−1</sup>. The specific capacities obtained from 3-electrode electrochemical measurements are 147 C g<sup>−1</sup>, 267 C g<sup>−1</sup>, 286 C g<sup>−1</sup>, and 366 C g<sup>−1</sup>, respectively, for MoO<sub>3</sub>, NiCo<sub>2</sub>Se<sub>4</sub>, MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-0 h, and MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h nanostructures at 2 A g<sup>−1</sup>. An asymmetric Swagelok device is fabricated for MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h//AC electrode material delivering a maximum energy density of 30.4 Wh kg<sup>−1</sup> and power density of 1499 W kg<sup>−1</sup>. This study highlights the significance of MoO<sub>3</sub> in tuning the functional characteristics of NiCo<sub>2</sub>Se<sub>4</sub> nanostructures for charge storage applications. The newly developed material shows significant promise as electrode material for further exploration and real-world implementation within the energy storage sector.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ball-milled MoO3@NiCo2Se4 composite for supercapacitor electrode\",\"authors\":\"K. Thejasree, M. L. Aparna, Tapan Kumar Ghosh, Vineet Mishra, K. T. Ramakrishna Reddy, G. Ranga Rao\",\"doi\":\"10.1007/s10008-024-06073-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ternary selenides are an attractive choice for supercapacitor electrode materials owing to their multiple oxidation states, higher electronic conductivity, and better electro activity. However, to attain improved charge storage performance, the electrode materials must be strategically tailored as nanostructured hybrid composites. Herein, we experimentally explore the electrochemical charge storage characteristics of MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> nanostructure. MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> is synthesized via hydrothermal route coupled with ball milling, varying the milling duration from 0 to 4 h. The MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> composite obtained by 4 h ball milling process produced well mixed polymeric molybdates and NiCo<sub>2</sub>Se<sub>4</sub> nanostructures with highest surface area of 5.9 m<sup>2</sup> g<sup>−1</sup>. The specific capacities obtained from 3-electrode electrochemical measurements are 147 C g<sup>−1</sup>, 267 C g<sup>−1</sup>, 286 C g<sup>−1</sup>, and 366 C g<sup>−1</sup>, respectively, for MoO<sub>3</sub>, NiCo<sub>2</sub>Se<sub>4</sub>, MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-0 h, and MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h nanostructures at 2 A g<sup>−1</sup>. An asymmetric Swagelok device is fabricated for MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h//AC electrode material delivering a maximum energy density of 30.4 Wh kg<sup>−1</sup> and power density of 1499 W kg<sup>−1</sup>. This study highlights the significance of MoO<sub>3</sub> in tuning the functional characteristics of NiCo<sub>2</sub>Se<sub>4</sub> nanostructures for charge storage applications. The newly developed material shows significant promise as electrode material for further exploration and real-world implementation within the energy storage sector.</p>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10008-024-06073-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06073-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
三元硒化物具有多种氧化态、更高的电子传导性和更好的电活性,是超级电容器电极材料的理想选择。然而,要获得更好的电荷存储性能,必须对电极材料进行战略性定制,使其成为纳米结构的混合复合材料。在此,我们通过实验探索了 MoO3@NiCo2Se4 纳米结构的电化学电荷存储特性。通过水热法和球磨法合成了 MoO3@NiCo2Se4,球磨时间从 0 小时到 4 小时不等。经 4 小时球磨得到的 MoO3@NiCo2Se4 复合材料产生了混合良好的聚合钼酸盐和 NiCo2Se4 纳米结构,具有最高的比表面积 5.9 m2 g-1。在 2 A g-1 的条件下,通过三电极电化学测量,MoO3、NiCo2Se4、MoO3@NiCo2Se4-0 h 和 MoO3@NiCo2Se4-4 h 纳米结构的比容量分别为 147 C g-1、267 C g-1、286 C g-1 和 366 C g-1。利用 MoO3@NiCo2Se4-4 h//AC 电极材料制造的非对称世伟洛克装置的最大能量密度为 30.4 Wh kg-1,功率密度为 1499 W kg-1。这项研究强调了 MoO3 在调整 NiCo2Se4 纳米结构的功能特性以实现电荷存储应用方面的重要意义。新开发的材料显示出作为电极材料的巨大前景,可在储能领域进一步探索和实际应用。
Ball-milled MoO3@NiCo2Se4 composite for supercapacitor electrode
Ternary selenides are an attractive choice for supercapacitor electrode materials owing to their multiple oxidation states, higher electronic conductivity, and better electro activity. However, to attain improved charge storage performance, the electrode materials must be strategically tailored as nanostructured hybrid composites. Herein, we experimentally explore the electrochemical charge storage characteristics of MoO3@NiCo2Se4 nanostructure. MoO3@NiCo2Se4 is synthesized via hydrothermal route coupled with ball milling, varying the milling duration from 0 to 4 h. The MoO3@NiCo2Se4 composite obtained by 4 h ball milling process produced well mixed polymeric molybdates and NiCo2Se4 nanostructures with highest surface area of 5.9 m2 g−1. The specific capacities obtained from 3-electrode electrochemical measurements are 147 C g−1, 267 C g−1, 286 C g−1, and 366 C g−1, respectively, for MoO3, NiCo2Se4, MoO3@NiCo2Se4-0 h, and MoO3@NiCo2Se4-4 h nanostructures at 2 A g−1. An asymmetric Swagelok device is fabricated for MoO3@NiCo2Se4-4 h//AC electrode material delivering a maximum energy density of 30.4 Wh kg−1 and power density of 1499 W kg−1. This study highlights the significance of MoO3 in tuning the functional characteristics of NiCo2Se4 nanostructures for charge storage applications. The newly developed material shows significant promise as electrode material for further exploration and real-world implementation within the energy storage sector.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.