基于机器学习的复原力和粮食安全探索

IF 3.3 2区 经济学 Q2 AGRICULTURAL ECONOMICS & POLICY Applied Economic Perspectives and Policy Pub Date : 2024-09-19 DOI:10.1002/aepp.13475
Alexis H. Villacis, Syed Badruddoza, Ashok K. Mishra
{"title":"基于机器学习的复原力和粮食安全探索","authors":"Alexis H. Villacis,&nbsp;Syed Badruddoza,&nbsp;Ashok K. Mishra","doi":"10.1002/aepp.13475","DOIUrl":null,"url":null,"abstract":"<p>Leveraging advancements in remote data collection and using the Food Insecurity Experience Scale (FIES) as a proxy measure of resilience, we show that machine learning models (such as Gradient Boosting Classifier, eXtreme Gradient Boosting, and Artificial Neural Networks), can predict resilience with relatively high accuracy (up to 81%). Key household-level predictors include access to financial institutions, asset ownership, the adoption of agricultural mechanization as evidenced by the use of tractors, the number of crops cultivated, and ownership of nonfarm enterprises. Our analysis offers insights to researchers and policymakers interested in the development of targeted interventions to bolster household resilience.</p>","PeriodicalId":8004,"journal":{"name":"Applied Economic Perspectives and Policy","volume":"46 4","pages":"1479-1505"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aepp.13475","citationCount":"0","resultStr":"{\"title\":\"A machine learning-based exploration of resilience and food security\",\"authors\":\"Alexis H. Villacis,&nbsp;Syed Badruddoza,&nbsp;Ashok K. Mishra\",\"doi\":\"10.1002/aepp.13475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leveraging advancements in remote data collection and using the Food Insecurity Experience Scale (FIES) as a proxy measure of resilience, we show that machine learning models (such as Gradient Boosting Classifier, eXtreme Gradient Boosting, and Artificial Neural Networks), can predict resilience with relatively high accuracy (up to 81%). Key household-level predictors include access to financial institutions, asset ownership, the adoption of agricultural mechanization as evidenced by the use of tractors, the number of crops cultivated, and ownership of nonfarm enterprises. Our analysis offers insights to researchers and policymakers interested in the development of targeted interventions to bolster household resilience.</p>\",\"PeriodicalId\":8004,\"journal\":{\"name\":\"Applied Economic Perspectives and Policy\",\"volume\":\"46 4\",\"pages\":\"1479-1505\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aepp.13475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Economic Perspectives and Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aepp.13475\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Economic Perspectives and Policy","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aepp.13475","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0

摘要

利用远程数据收集方面的进步,并使用 "粮食不安全体验量表"(FIES)作为抗灾能力的替代衡量标准,我们发现机器学习模型(如梯度提升分类器、eXtreme 梯度提升和人工神经网络)能够以相对较高的准确率(高达 81%)预测抗灾能力。家庭层面的主要预测因素包括金融机构的使用、资产所有权、农业机械化的采用(以拖拉机的使用为证)、农作物的种植数量以及非农企业的所有权。我们的分析为有志于制定有针对性的干预措施以增强家庭抗灾能力的研究人员和政策制定者提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning-based exploration of resilience and food security

Leveraging advancements in remote data collection and using the Food Insecurity Experience Scale (FIES) as a proxy measure of resilience, we show that machine learning models (such as Gradient Boosting Classifier, eXtreme Gradient Boosting, and Artificial Neural Networks), can predict resilience with relatively high accuracy (up to 81%). Key household-level predictors include access to financial institutions, asset ownership, the adoption of agricultural mechanization as evidenced by the use of tractors, the number of crops cultivated, and ownership of nonfarm enterprises. Our analysis offers insights to researchers and policymakers interested in the development of targeted interventions to bolster household resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Economic Perspectives and Policy
Applied Economic Perspectives and Policy AGRICULTURAL ECONOMICS & POLICY-
CiteScore
10.70
自引率
6.90%
发文量
117
审稿时长
>12 weeks
期刊介绍: Applied Economic Perspectives and Policy provides a forum to address contemporary and emerging policy issues within an economic framework that informs the decision-making and policy-making community. AEPP welcomes submissions related to the economics of public policy themes associated with agriculture; animal, plant, and human health; energy; environment; food and consumer behavior; international development; natural hazards; natural resources; population and migration; and regional and rural development.
期刊最新文献
Issue Information EU food price inflation amid global market turbulences during the COVID-19 pandemic and the Russia–Ukraine War Geostrategic dimensions of recent food policy decisions The impact of agricultural policy evolution on long-run grain market projection The interplay of geopolitics and agricultural commodity prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1