Lana M. Kessels, Willemijn H. M. Remmerswaal, Lara M. van der Poll, Laura Bellini, Lars J. Bannenberg, Martijn M. Wienk, Tom J. Savenije, René A. J. Janssen
{"title":"揭示盐酸甘氨酸对铅锌基包晶石太阳能电池性能的积极影响","authors":"Lana M. Kessels, Willemijn H. M. Remmerswaal, Lara M. van der Poll, Laura Bellini, Lars J. Bannenberg, Martijn M. Wienk, Tom J. Savenije, René A. J. Janssen","doi":"10.1002/solr.202400506","DOIUrl":null,"url":null,"abstract":"<p>Additives are commonly used to increase the performance of metal-halide perovskite solar cells, but detailed information on the origin of the beneficial outcome is often lacking. Herein, the effect of glycine hydrochloride is investigated when used as an additive during solution processing of narrow-bandgap mixed Pb–Sn perovskites. By combining the characterization of the photovoltaic performance and stability under illumination, with determining the quasi-Fermi level splitting, time-resolved microwave conductivity (TRMC), and morphological and elemental analysis a comprehensive insight is obtained. Glycine hydrochloride is able to retard the oxidation of Sn<sup>2+</sup> in the precursor solution, and at low concentrations (1–2 mol%) it improves the grain size distribution and crystallization of the perovskite, causing a smoother and more compact layer, reducing non-radiative recombination, and enhancing the lifetime of photogenerated charges. These improve the photovoltaic performance and have a positive effect on stability. By determining the quasi-Fermi level splitting on perovskite layers without and with charge transport layers it is found that glycine hydrochloride primarily improves the bulk of the perovskite layer and does not contribute significantly to passivation of the interfaces of the perovskite with either the hole or electron transport layer (ETL).</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 21","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400506","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells\",\"authors\":\"Lana M. Kessels, Willemijn H. M. Remmerswaal, Lara M. van der Poll, Laura Bellini, Lars J. Bannenberg, Martijn M. Wienk, Tom J. Savenije, René A. J. Janssen\",\"doi\":\"10.1002/solr.202400506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Additives are commonly used to increase the performance of metal-halide perovskite solar cells, but detailed information on the origin of the beneficial outcome is often lacking. Herein, the effect of glycine hydrochloride is investigated when used as an additive during solution processing of narrow-bandgap mixed Pb–Sn perovskites. By combining the characterization of the photovoltaic performance and stability under illumination, with determining the quasi-Fermi level splitting, time-resolved microwave conductivity (TRMC), and morphological and elemental analysis a comprehensive insight is obtained. Glycine hydrochloride is able to retard the oxidation of Sn<sup>2+</sup> in the precursor solution, and at low concentrations (1–2 mol%) it improves the grain size distribution and crystallization of the perovskite, causing a smoother and more compact layer, reducing non-radiative recombination, and enhancing the lifetime of photogenerated charges. These improve the photovoltaic performance and have a positive effect on stability. By determining the quasi-Fermi level splitting on perovskite layers without and with charge transport layers it is found that glycine hydrochloride primarily improves the bulk of the perovskite layer and does not contribute significantly to passivation of the interfaces of the perovskite with either the hole or electron transport layer (ETL).</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 21\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400506\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400506","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells
Additives are commonly used to increase the performance of metal-halide perovskite solar cells, but detailed information on the origin of the beneficial outcome is often lacking. Herein, the effect of glycine hydrochloride is investigated when used as an additive during solution processing of narrow-bandgap mixed Pb–Sn perovskites. By combining the characterization of the photovoltaic performance and stability under illumination, with determining the quasi-Fermi level splitting, time-resolved microwave conductivity (TRMC), and morphological and elemental analysis a comprehensive insight is obtained. Glycine hydrochloride is able to retard the oxidation of Sn2+ in the precursor solution, and at low concentrations (1–2 mol%) it improves the grain size distribution and crystallization of the perovskite, causing a smoother and more compact layer, reducing non-radiative recombination, and enhancing the lifetime of photogenerated charges. These improve the photovoltaic performance and have a positive effect on stability. By determining the quasi-Fermi level splitting on perovskite layers without and with charge transport layers it is found that glycine hydrochloride primarily improves the bulk of the perovskite layer and does not contribute significantly to passivation of the interfaces of the perovskite with either the hole or electron transport layer (ETL).
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.