{"title":"基于深度学习方法的台风路径预报校准","authors":"Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, Juncheng Zuo","doi":"10.3390/atmos15091125","DOIUrl":null,"url":null,"abstract":"An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of Typhoon Track Forecasts Based on Deep Learning Methods\",\"authors\":\"Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, Juncheng Zuo\",\"doi\":\"10.3390/atmos15091125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091125\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091125","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.