来自单分子磁体阵列的时间晶体

Subhajit Sarkar, Yonatan Dubi
{"title":"来自单分子磁体阵列的时间晶体","authors":"Subhajit Sarkar, Yonatan Dubi","doi":"arxiv-2409.10816","DOIUrl":null,"url":null,"abstract":"Time crystals, a unique non-equilibrium quantum phenomenon with promising\napplications in current quantum technologies, mark a significant advance in\nquantum mechanics. Although traditionally studied in atom-cavity and optical\nlattice systems, pursuing alternative nanoscale platforms for time crystals is\ncrucial. Here we theoretically predict discrete time-crystals in a periodically\ndriven molecular magnet array, modeled by a spin-S Heisenberg Hamiltonian with\nsignificant quadratic anisotropy, taken with realistic and experimentally\nrelevant physical parameters. Surprisingly, we find that the time-crystal\nresponse frequency correlates with the energy levels of the individual magnets\nand is essentially independent of the exchange coupling. The latter is\nunexpectedly manifested through a pulse-like oscillation in the magnetization\nenvelope, signaling a many-body response. These results show that molecular\nmagnets can be a rich platform for studying time-crystalline behavior and\npossibly other out-of-equilibrium quantum many-body dynamics.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Crystals from single-molecule magnet arrays\",\"authors\":\"Subhajit Sarkar, Yonatan Dubi\",\"doi\":\"arxiv-2409.10816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time crystals, a unique non-equilibrium quantum phenomenon with promising\\napplications in current quantum technologies, mark a significant advance in\\nquantum mechanics. Although traditionally studied in atom-cavity and optical\\nlattice systems, pursuing alternative nanoscale platforms for time crystals is\\ncrucial. Here we theoretically predict discrete time-crystals in a periodically\\ndriven molecular magnet array, modeled by a spin-S Heisenberg Hamiltonian with\\nsignificant quadratic anisotropy, taken with realistic and experimentally\\nrelevant physical parameters. Surprisingly, we find that the time-crystal\\nresponse frequency correlates with the energy levels of the individual magnets\\nand is essentially independent of the exchange coupling. The latter is\\nunexpectedly manifested through a pulse-like oscillation in the magnetization\\nenvelope, signaling a many-body response. These results show that molecular\\nmagnets can be a rich platform for studying time-crystalline behavior and\\npossibly other out-of-equilibrium quantum many-body dynamics.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间晶体是一种独特的非平衡量子现象,在当前的量子技术中具有广阔的应用前景,标志着量子力学的重大进步。虽然传统上是在原子腔和光晶格系统中研究时间晶体,但寻求时间晶体的替代纳米级平台至关重要。在这里,我们从理论上预测了周期性驱动分子磁体阵列中的离散时间晶体,该磁体阵列以具有显著二次各向异性的自旋-S 海森堡哈密顿为模型,并采用了现实和实验相关的物理参数。令人惊讶的是,我们发现时间晶体响应频率与单个磁体的能级相关,并且基本上与交换耦合无关。后者出乎意料地通过磁化包络中的脉冲式振荡表现出来,预示着一种多体响应。这些结果表明,分子磁体可以成为研究时晶行为和其他可能的失衡量子多体动力学的丰富平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Crystals from single-molecule magnet arrays
Time crystals, a unique non-equilibrium quantum phenomenon with promising applications in current quantum technologies, mark a significant advance in quantum mechanics. Although traditionally studied in atom-cavity and optical lattice systems, pursuing alternative nanoscale platforms for time crystals is crucial. Here we theoretically predict discrete time-crystals in a periodically driven molecular magnet array, modeled by a spin-S Heisenberg Hamiltonian with significant quadratic anisotropy, taken with realistic and experimentally relevant physical parameters. Surprisingly, we find that the time-crystal response frequency correlates with the energy levels of the individual magnets and is essentially independent of the exchange coupling. The latter is unexpectedly manifested through a pulse-like oscillation in the magnetization envelope, signaling a many-body response. These results show that molecular magnets can be a rich platform for studying time-crystalline behavior and possibly other out-of-equilibrium quantum many-body dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance advantage of protective quantum measurements Mechanical Wannier-Stark Ladder of Diamond Spin-Mechanical Lamb Wave Resonators Towards practical secure delegated quantum computing with semi-classical light Quantum-like nonlinear interferometry with frequency-engineered classical light QUBO-based SVM for credit card fraud detection on a real QPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1