{"title":"血液凝固的膜依赖性反应:经典观点和最新概念","authors":"T. A. Kovalenko, M. A. Panteleev","doi":"10.1134/S199074782470020X","DOIUrl":null,"url":null,"abstract":"<p>The complex mechanism called hemostasis evolved in living organisms to prevent blood loss when a blood vessel is damaged. In this process, two closely interconnected systems are distinguished: platelet-vascular and plasmatic hemostasis. Plasmatic hemostasis is a system of proteolytic reactions, in which blood plasma proteins called coagulation factors are involved. A key feature of this system is the localization of enzymatic reactions on the surface of phospholipid membranes, which increases their rate by up to 5 orders of magnitude. This review describes the basic mechanisms of coagulation factors binding to phospholipid membranes, the pathways for complex assembly and activation reactions, and discusses the role of membranes in this process, their composition and sources. The binding of coagulation factors to procoagulant membranes leads not only to the acceleration of coagulation reactions, but also to their selective localization in restricted areas and protection from being washed away by the flow. The efficiency of coagulation reactions is regulated by the composition of the outer layer of the membrane, primarily through a special mechanism of mitochondria-dependent necrotic platelet death.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 3","pages":"200 - 218"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-Dependent Reactions of Blood Coagulation: Classical View and State-of-the-Art Concepts\",\"authors\":\"T. A. Kovalenko, M. A. Panteleev\",\"doi\":\"10.1134/S199074782470020X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex mechanism called hemostasis evolved in living organisms to prevent blood loss when a blood vessel is damaged. In this process, two closely interconnected systems are distinguished: platelet-vascular and plasmatic hemostasis. Plasmatic hemostasis is a system of proteolytic reactions, in which blood plasma proteins called coagulation factors are involved. A key feature of this system is the localization of enzymatic reactions on the surface of phospholipid membranes, which increases their rate by up to 5 orders of magnitude. This review describes the basic mechanisms of coagulation factors binding to phospholipid membranes, the pathways for complex assembly and activation reactions, and discusses the role of membranes in this process, their composition and sources. The binding of coagulation factors to procoagulant membranes leads not only to the acceleration of coagulation reactions, but also to their selective localization in restricted areas and protection from being washed away by the flow. The efficiency of coagulation reactions is regulated by the composition of the outer layer of the membrane, primarily through a special mechanism of mitochondria-dependent necrotic platelet death.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"18 3\",\"pages\":\"200 - 218\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S199074782470020X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S199074782470020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Membrane-Dependent Reactions of Blood Coagulation: Classical View and State-of-the-Art Concepts
The complex mechanism called hemostasis evolved in living organisms to prevent blood loss when a blood vessel is damaged. In this process, two closely interconnected systems are distinguished: platelet-vascular and plasmatic hemostasis. Plasmatic hemostasis is a system of proteolytic reactions, in which blood plasma proteins called coagulation factors are involved. A key feature of this system is the localization of enzymatic reactions on the surface of phospholipid membranes, which increases their rate by up to 5 orders of magnitude. This review describes the basic mechanisms of coagulation factors binding to phospholipid membranes, the pathways for complex assembly and activation reactions, and discusses the role of membranes in this process, their composition and sources. The binding of coagulation factors to procoagulant membranes leads not only to the acceleration of coagulation reactions, but also to their selective localization in restricted areas and protection from being washed away by the flow. The efficiency of coagulation reactions is regulated by the composition of the outer layer of the membrane, primarily through a special mechanism of mitochondria-dependent necrotic platelet death.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.