{"title":"细胞膜胆固醇与细胞过程调控:新旧事物","authors":"A. Ya. Dunina-Barkovskaya","doi":"10.1134/S1990747824700223","DOIUrl":null,"url":null,"abstract":"<p>Membranes of living cells, or biological membranes, are unique molecular systems in which the functioning of all molecules is interdependent and coordinated, and disruption of this coordination can be fatal for the cell. One example of such coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review summarizes the facts about the importance of the cholesterol component of cell membranes for the normal functioning of membrane proteins and the whole cell. This lipid component provides fine regulation of a variety of cellular functions and provides clues to understanding changes in the activity of a number of proteins under various physiologic and pathologic conditions. This review provides examples of cholesterol-dependent membrane proteins and cellular processes and discusses their role in several pathologies. Understanding the mechanisms of cholesterol–protein interactions represents a significant resource for the development of drugs that affect the cholesterol–protein interface.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 3","pages":"224 - 240"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Membrane Cholesterol and Regulation of Cellular Processes: New and the Same Old Thing\",\"authors\":\"A. Ya. Dunina-Barkovskaya\",\"doi\":\"10.1134/S1990747824700223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Membranes of living cells, or biological membranes, are unique molecular systems in which the functioning of all molecules is interdependent and coordinated, and disruption of this coordination can be fatal for the cell. One example of such coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review summarizes the facts about the importance of the cholesterol component of cell membranes for the normal functioning of membrane proteins and the whole cell. This lipid component provides fine regulation of a variety of cellular functions and provides clues to understanding changes in the activity of a number of proteins under various physiologic and pathologic conditions. This review provides examples of cholesterol-dependent membrane proteins and cellular processes and discusses their role in several pathologies. Understanding the mechanisms of cholesterol–protein interactions represents a significant resource for the development of drugs that affect the cholesterol–protein interface.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"18 3\",\"pages\":\"224 - 240\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747824700223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cell Membrane Cholesterol and Regulation of Cellular Processes: New and the Same Old Thing
Membranes of living cells, or biological membranes, are unique molecular systems in which the functioning of all molecules is interdependent and coordinated, and disruption of this coordination can be fatal for the cell. One example of such coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review summarizes the facts about the importance of the cholesterol component of cell membranes for the normal functioning of membrane proteins and the whole cell. This lipid component provides fine regulation of a variety of cellular functions and provides clues to understanding changes in the activity of a number of proteins under various physiologic and pathologic conditions. This review provides examples of cholesterol-dependent membrane proteins and cellular processes and discusses their role in several pathologies. Understanding the mechanisms of cholesterol–protein interactions represents a significant resource for the development of drugs that affect the cholesterol–protein interface.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.