脂质介导的蛋白质和肽在细胞膜中的适应性

A. A. Polyansky, R. G. Efremov
{"title":"脂质介导的蛋白质和肽在细胞膜中的适应性","authors":"A. A. Polyansky,&nbsp;R. G. Efremov","doi":"10.1134/S1990747824700235","DOIUrl":null,"url":null,"abstract":"<p>The paper overviews the results of computational studies of the molecular mechanisms underlying the adaptation of model cell membranes taking place during their interaction with proteins and peptides. We discuss changes in the structural and dynamic parameters of the water–lipid environment, the hydrophobic/hydrophilic organization of the lipid bilayer surface (the so-called “mosaicity”), etc. Taken together, these effects are called the “membrane response” (MR) and constitute the most important ability of the cell membranes to respond specifically and consistently to the incorporation of extraneous agents, primarily proteins and peptides, and their subsequent functioning. The results of the authors' long-term research in the field of molecular modeling of MR processes with various spatial and temporal characteristics are described, from the effects of binding of individual lipid molecules to proteins to changes in the integral macroscopic parameters of membranes. The bulk of the results were obtained using the “dynamic molecular portrait” approach developed by the authors. The biological role of the observed phenomena and potential ways of rationally designing artificial membrane systems with specified MR characteristics are discussed. This, in turn, is important for targeted changes in the activity profile of proteins and peptides exerting action on biomembranes, not least as promising pharmacological agents.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid-Mediated Adaptation of Proteins and Peptides in Cell Membranes\",\"authors\":\"A. A. Polyansky,&nbsp;R. G. Efremov\",\"doi\":\"10.1134/S1990747824700235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper overviews the results of computational studies of the molecular mechanisms underlying the adaptation of model cell membranes taking place during their interaction with proteins and peptides. We discuss changes in the structural and dynamic parameters of the water–lipid environment, the hydrophobic/hydrophilic organization of the lipid bilayer surface (the so-called “mosaicity”), etc. Taken together, these effects are called the “membrane response” (MR) and constitute the most important ability of the cell membranes to respond specifically and consistently to the incorporation of extraneous agents, primarily proteins and peptides, and their subsequent functioning. The results of the authors' long-term research in the field of molecular modeling of MR processes with various spatial and temporal characteristics are described, from the effects of binding of individual lipid molecules to proteins to changes in the integral macroscopic parameters of membranes. The bulk of the results were obtained using the “dynamic molecular portrait” approach developed by the authors. The biological role of the observed phenomena and potential ways of rationally designing artificial membrane systems with specified MR characteristics are discussed. This, in turn, is important for targeted changes in the activity profile of proteins and peptides exerting action on biomembranes, not least as promising pharmacological agents.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747824700235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文概述了对模型细胞膜在与蛋白质和肽相互作用过程中发生适应性变化的分子机制进行计算研究的结果。我们讨论了水脂环境结构和动态参数的变化、脂质双层表面的疏水/亲水组织(所谓的 "镶嵌性")等。这些效应合在一起被称为 "膜响应"(MR),是细胞膜对外来物质(主要是蛋白质和肽类)的加入及其后续功能做出特异性和一致性响应的最重要能力。本文介绍了作者在分子建模领域长期研究具有各种空间和时间特征的 MR 过程的成果,从单个脂质分子与蛋白质结合的影响到膜的整体宏观参数变化。大部分结果都是通过作者开发的 "动态分子肖像 "方法获得的。文中讨论了所观察到现象的生物学作用,以及合理设计具有特定磁共振特征的人工膜系统的潜在方法。反过来,这对于有针对性地改变对生物膜起作用的蛋白质和肽的活性概况也很重要,尤其是作为有前途的药剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid-Mediated Adaptation of Proteins and Peptides in Cell Membranes

The paper overviews the results of computational studies of the molecular mechanisms underlying the adaptation of model cell membranes taking place during their interaction with proteins and peptides. We discuss changes in the structural and dynamic parameters of the water–lipid environment, the hydrophobic/hydrophilic organization of the lipid bilayer surface (the so-called “mosaicity”), etc. Taken together, these effects are called the “membrane response” (MR) and constitute the most important ability of the cell membranes to respond specifically and consistently to the incorporation of extraneous agents, primarily proteins and peptides, and their subsequent functioning. The results of the authors' long-term research in the field of molecular modeling of MR processes with various spatial and temporal characteristics are described, from the effects of binding of individual lipid molecules to proteins to changes in the integral macroscopic parameters of membranes. The bulk of the results were obtained using the “dynamic molecular portrait” approach developed by the authors. The biological role of the observed phenomena and potential ways of rationally designing artificial membrane systems with specified MR characteristics are discussed. This, in turn, is important for targeted changes in the activity profile of proteins and peptides exerting action on biomembranes, not least as promising pharmacological agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
The Rhodopsin Project To the 90th Anniversary of the Birth of Academician Yuri Anatolievich Ovchinnikov Alterations of Store-Operated Calcium Entry in Neurodegenerative Pathologies: History, Facts, and Prospects Structural Studies of Ion Channels: Achievements, Problems, and Perspectives Structure and Functions of the OTOP1 Proton Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1