PReLU:XOR 问题的另一种单层解决方案

Rafael C. Pinto, Anderson R. Tavares
{"title":"PReLU:XOR 问题的另一种单层解决方案","authors":"Rafael C. Pinto, Anderson R. Tavares","doi":"arxiv-2409.10821","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that a single-layer neural network using Parametric\nRectified Linear Unit (PReLU) activation can solve the XOR problem, a simple\nfact that has been overlooked so far. We compare this solution to the\nmulti-layer perceptron (MLP) and the Growing Cosine Unit (GCU) activation\nfunction and explain why PReLU enables this capability. Our results show that\nthe single-layer PReLU network can achieve 100\\% success rate in a wider range\nof learning rates while using only three learnable parameters.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PReLU: Yet Another Single-Layer Solution to the XOR Problem\",\"authors\":\"Rafael C. Pinto, Anderson R. Tavares\",\"doi\":\"arxiv-2409.10821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates that a single-layer neural network using Parametric\\nRectified Linear Unit (PReLU) activation can solve the XOR problem, a simple\\nfact that has been overlooked so far. We compare this solution to the\\nmulti-layer perceptron (MLP) and the Growing Cosine Unit (GCU) activation\\nfunction and explain why PReLU enables this capability. Our results show that\\nthe single-layer PReLU network can achieve 100\\\\% success rate in a wider range\\nof learning rates while using only three learnable parameters.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了使用参数线性单元(PReLU)激活的单层神经网络可以解决 XOR 问题,而这是一个迄今为止一直被忽视的简单问题。我们将这一解决方案与多层感知器(MLP)和增长余弦单元(GCU)激活功能进行了比较,并解释了为什么 PReLU 能够实现这一功能。我们的结果表明,单层 PReLU 网络可以在更宽的学习率范围内实现 100% 的成功率,同时只使用三个可学习参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PReLU: Yet Another Single-Layer Solution to the XOR Problem
This paper demonstrates that a single-layer neural network using Parametric Rectified Linear Unit (PReLU) activation can solve the XOR problem, a simple fact that has been overlooked so far. We compare this solution to the multi-layer perceptron (MLP) and the Growing Cosine Unit (GCU) activation function and explain why PReLU enables this capability. Our results show that the single-layer PReLU network can achieve 100\% success rate in a wider range of learning rates while using only three learnable parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1