TX-Gen:时间序列分类稀疏反事实解释的多目标优化

Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein
{"title":"TX-Gen:时间序列分类稀疏反事实解释的多目标优化","authors":"Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein","doi":"arxiv-2409.09461","DOIUrl":null,"url":null,"abstract":"In time-series classification, understanding model decisions is crucial for\ntheir application in high-stakes domains such as healthcare and finance.\nCounterfactual explanations, which provide insights by presenting alternative\ninputs that change model predictions, offer a promising solution. However,\nexisting methods for generating counterfactual explanations for time-series\ndata often struggle with balancing key objectives like proximity, sparsity, and\nvalidity. In this paper, we introduce TX-Gen, a novel algorithm for generating\ncounterfactual explanations based on the Non-dominated Sorting Genetic\nAlgorithm II (NSGA-II). TX-Gen leverages evolutionary multi-objective\noptimization to find a diverse set of counterfactuals that are both sparse and\nvalid, while maintaining minimal dissimilarity to the original time series. By\nincorporating a flexible reference-guided mechanism, our method improves the\nplausibility and interpretability of the counterfactuals without relying on\npredefined assumptions. Extensive experiments on benchmark datasets demonstrate\nthat TX-Gen outperforms existing methods in generating high-quality\ncounterfactuals, making time-series models more transparent and interpretable.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification\",\"authors\":\"Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein\",\"doi\":\"arxiv-2409.09461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In time-series classification, understanding model decisions is crucial for\\ntheir application in high-stakes domains such as healthcare and finance.\\nCounterfactual explanations, which provide insights by presenting alternative\\ninputs that change model predictions, offer a promising solution. However,\\nexisting methods for generating counterfactual explanations for time-series\\ndata often struggle with balancing key objectives like proximity, sparsity, and\\nvalidity. In this paper, we introduce TX-Gen, a novel algorithm for generating\\ncounterfactual explanations based on the Non-dominated Sorting Genetic\\nAlgorithm II (NSGA-II). TX-Gen leverages evolutionary multi-objective\\noptimization to find a diverse set of counterfactuals that are both sparse and\\nvalid, while maintaining minimal dissimilarity to the original time series. By\\nincorporating a flexible reference-guided mechanism, our method improves the\\nplausibility and interpretability of the counterfactuals without relying on\\npredefined assumptions. Extensive experiments on benchmark datasets demonstrate\\nthat TX-Gen outperforms existing methods in generating high-quality\\ncounterfactuals, making time-series models more transparent and interpretable.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在时间序列分类中,理解模型的决策对其在医疗保健和金融等高风险领域的应用至关重要。反事实解释通过提出改变模型预测的替代输入来提供洞察力,提供了一种有前途的解决方案。然而,现有的为时间序列数据生成反事实解释的方法往往难以在接近性、稀疏性和有效性等关键目标之间取得平衡。本文介绍了 TX-Gen,这是一种基于非优势排序遗传算法 II(NSGA-II)的生成反事实解释的新型算法。TX-Gen 利用进化式多目标优化找到了一组既稀疏又有效的多样化反事实,同时保持了与原始时间序列的最小相似性。通过结合灵活的参考引导机制,我们的方法提高了反事实的可信度和可解释性,而无需依赖预先定义的假设。在基准数据集上进行的大量实验证明,TX-Gen 在生成高质量反事实方面优于现有方法,从而使时间序列模型更加透明和可解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification
In time-series classification, understanding model decisions is crucial for their application in high-stakes domains such as healthcare and finance. Counterfactual explanations, which provide insights by presenting alternative inputs that change model predictions, offer a promising solution. However, existing methods for generating counterfactual explanations for time-series data often struggle with balancing key objectives like proximity, sparsity, and validity. In this paper, we introduce TX-Gen, a novel algorithm for generating counterfactual explanations based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). TX-Gen leverages evolutionary multi-objective optimization to find a diverse set of counterfactuals that are both sparse and valid, while maintaining minimal dissimilarity to the original time series. By incorporating a flexible reference-guided mechanism, our method improves the plausibility and interpretability of the counterfactuals without relying on predefined assumptions. Extensive experiments on benchmark datasets demonstrate that TX-Gen outperforms existing methods in generating high-quality counterfactuals, making time-series models more transparent and interpretable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1