Xiaoying Kang, Zekun Du, Shuxuan Yang, Mengyun Liang, Qian Liu, Ji Qi
{"title":"具有可控光物理特性的智能分子探针用于智能医疗","authors":"Xiaoying Kang, Zekun Du, Shuxuan Yang, Mengyun Liang, Qian Liu, Ji Qi","doi":"10.1002/smo.20240033","DOIUrl":null,"url":null,"abstract":"Precision medicine calls for advanced theranostics that integrate controllable diagnostic and therapeutic capabilities into one platform for disease treatment in the early stage. Phototheranostics such as fluorescence imaging (FLI), photoacoustic imaging (PAI), photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted considerable attention in recent years, which mainly employ different excited-state energy dissipation pathways of a chromophore. According to the Jablonski diagram, FLI is related to the radiative process, PAI and PTT are derived from the nonradiative thermal deactivation, and PDT originates from the triplet state energy, in which these processes are usually competitive. Therefore, it is critically important to precisely tune the photophysical energy transformation processes to realize certain diagnosis and treatment properties in optimal state for boosting biomedical applications. Currently, there are mainly two strategies including chemical structure and aggregate behavior changes that relate to the regulation of excited state energy dissipation. In this review, we will discuss the recent advances of smart molecular probes that the photophysical properties can be regulated by external triggers and their applications in biomedical fields. We will summarize the development of activatable phototheranostic molecular probes in response to stimuli such as reactive oxygen species, pH, light, hypoxia, enzyme and gas. The assembly and disassembly of molecular aggregates that greatly affect the photophysical energy transformation processes will also be highlighted. This review aims to provide valuable insights into the development of more accurate diagnostic and therapeutic systems, thereby advancing the emerging field of smart medicine.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart molecular probes with controllable photophysical property for smart medicine\",\"authors\":\"Xiaoying Kang, Zekun Du, Shuxuan Yang, Mengyun Liang, Qian Liu, Ji Qi\",\"doi\":\"10.1002/smo.20240033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision medicine calls for advanced theranostics that integrate controllable diagnostic and therapeutic capabilities into one platform for disease treatment in the early stage. Phototheranostics such as fluorescence imaging (FLI), photoacoustic imaging (PAI), photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted considerable attention in recent years, which mainly employ different excited-state energy dissipation pathways of a chromophore. According to the Jablonski diagram, FLI is related to the radiative process, PAI and PTT are derived from the nonradiative thermal deactivation, and PDT originates from the triplet state energy, in which these processes are usually competitive. Therefore, it is critically important to precisely tune the photophysical energy transformation processes to realize certain diagnosis and treatment properties in optimal state for boosting biomedical applications. Currently, there are mainly two strategies including chemical structure and aggregate behavior changes that relate to the regulation of excited state energy dissipation. In this review, we will discuss the recent advances of smart molecular probes that the photophysical properties can be regulated by external triggers and their applications in biomedical fields. We will summarize the development of activatable phototheranostic molecular probes in response to stimuli such as reactive oxygen species, pH, light, hypoxia, enzyme and gas. The assembly and disassembly of molecular aggregates that greatly affect the photophysical energy transformation processes will also be highlighted. This review aims to provide valuable insights into the development of more accurate diagnostic and therapeutic systems, thereby advancing the emerging field of smart medicine.\",\"PeriodicalId\":501601,\"journal\":{\"name\":\"Smart Molecules\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Molecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smo.20240033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Molecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smo.20240033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
精准医疗需要先进的治疗技术,将可控诊断和治疗功能整合到一个平台中,以便在早期阶段进行疾病治疗。近年来,荧光成像(FLI)、光声成像(PAI)、光动力疗法(PDT)和光热疗法(PTT)等光热学疗法备受关注,它们主要采用了发色团的不同激发态能量耗散途径。根据雅布隆斯基图,FLI 与辐射过程有关,PAI 和 PTT 来自非辐射热失活,而 PDT 则源于三重态能量,这些过程通常是竞争性的。因此,精确调节光物理能量转换过程,使其在最佳状态下实现特定的诊断和治疗特性,对于促进生物医学应用至关重要。目前,与激发态能量耗散调控相关的策略主要有两种,包括化学结构和聚集行为变化。在这篇综述中,我们将讨论可通过外部触发器调节光物理性质的智能分子探针的最新进展及其在生物医学领域的应用。我们将总结针对活性氧、pH 值、光、缺氧、酶和气体等刺激的可激活光热分子探针的发展情况。我们还将重点介绍对光物理能量转化过程有重大影响的分子聚集体的组装和解体。本综述旨在为开发更精确的诊断和治疗系统提供有价值的见解,从而推动智能医学这一新兴领域的发展。
Smart molecular probes with controllable photophysical property for smart medicine
Precision medicine calls for advanced theranostics that integrate controllable diagnostic and therapeutic capabilities into one platform for disease treatment in the early stage. Phototheranostics such as fluorescence imaging (FLI), photoacoustic imaging (PAI), photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted considerable attention in recent years, which mainly employ different excited-state energy dissipation pathways of a chromophore. According to the Jablonski diagram, FLI is related to the radiative process, PAI and PTT are derived from the nonradiative thermal deactivation, and PDT originates from the triplet state energy, in which these processes are usually competitive. Therefore, it is critically important to precisely tune the photophysical energy transformation processes to realize certain diagnosis and treatment properties in optimal state for boosting biomedical applications. Currently, there are mainly two strategies including chemical structure and aggregate behavior changes that relate to the regulation of excited state energy dissipation. In this review, we will discuss the recent advances of smart molecular probes that the photophysical properties can be regulated by external triggers and their applications in biomedical fields. We will summarize the development of activatable phototheranostic molecular probes in response to stimuli such as reactive oxygen species, pH, light, hypoxia, enzyme and gas. The assembly and disassembly of molecular aggregates that greatly affect the photophysical energy transformation processes will also be highlighted. This review aims to provide valuable insights into the development of more accurate diagnostic and therapeutic systems, thereby advancing the emerging field of smart medicine.