脑室周围白质疏松症导致脑瘫儿童在以自我为中心和以分配为中心的视角下理解抓握动作能力受损

IF 1.6 3区 心理学 Q4 NEUROSCIENCES Human Movement Science Pub Date : 2024-09-19 DOI:10.1016/j.humov.2024.103292
Francesca Tinelli , Giulia Purpura , Giovanni Cioni , Maria Concetta Morrone , Marco Turi
{"title":"脑室周围白质疏松症导致脑瘫儿童在以自我为中心和以分配为中心的视角下理解抓握动作能力受损","authors":"Francesca Tinelli ,&nbsp;Giulia Purpura ,&nbsp;Giovanni Cioni ,&nbsp;Maria Concetta Morrone ,&nbsp;Marco Turi","doi":"10.1016/j.humov.2024.103292","DOIUrl":null,"url":null,"abstract":"<div><div>Recognizing and understanding the actions of others through motion information are vital functions for social adaptation. Conditions like neurological disorders and motor impairments can impact sensitivity to biological motion, highlighting the intricate relationship between perceiving and executing movements. Our study centred on assessing the ability of children, encompassing both those with typical development and those diagnosed with cerebral palsy due to periventricular leukomalacia (PVL), to discriminate between depicted grasping of a small cylinder and a large cube. This discrimination task involved observing a point-light animation depicting an actor grasping the object, presented from either an allocentric perspective (observing others) or an egocentric viewpoint (observing oneself). Notably, children with PVL exhibited a pronounced and specific impairment in this task, irrespective of the viewpoint, as evidenced by thresholds increasing by nearly a factor of two. When comparing this impairment to difficulties in form or motion perception, we identified a robust correlation between egocentric biological motion and form sensitivity. However, there was no similar correlation between motion and biological motion sensitivity, suggesting a deficit in the visual system rather than the visuo-motor control system. These findings contribute to our understanding of the intricate interplay between motor and visual processing in individuals with congenital brain lesions, shedding light on the significant involvement of the visual system in cases of PVL.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167945724001179/pdfft?md5=386f86a8c00641e2bc853ce92c31aff4&pid=1-s2.0-S0167945724001179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impairment in understanding grasping movements in egocentric and allocentric perspectives in children with cerebral palsy due to periventricular leukomalacia\",\"authors\":\"Francesca Tinelli ,&nbsp;Giulia Purpura ,&nbsp;Giovanni Cioni ,&nbsp;Maria Concetta Morrone ,&nbsp;Marco Turi\",\"doi\":\"10.1016/j.humov.2024.103292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recognizing and understanding the actions of others through motion information are vital functions for social adaptation. Conditions like neurological disorders and motor impairments can impact sensitivity to biological motion, highlighting the intricate relationship between perceiving and executing movements. Our study centred on assessing the ability of children, encompassing both those with typical development and those diagnosed with cerebral palsy due to periventricular leukomalacia (PVL), to discriminate between depicted grasping of a small cylinder and a large cube. This discrimination task involved observing a point-light animation depicting an actor grasping the object, presented from either an allocentric perspective (observing others) or an egocentric viewpoint (observing oneself). Notably, children with PVL exhibited a pronounced and specific impairment in this task, irrespective of the viewpoint, as evidenced by thresholds increasing by nearly a factor of two. When comparing this impairment to difficulties in form or motion perception, we identified a robust correlation between egocentric biological motion and form sensitivity. However, there was no similar correlation between motion and biological motion sensitivity, suggesting a deficit in the visual system rather than the visuo-motor control system. These findings contribute to our understanding of the intricate interplay between motor and visual processing in individuals with congenital brain lesions, shedding light on the significant involvement of the visual system in cases of PVL.</div></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167945724001179/pdfft?md5=386f86a8c00641e2bc853ce92c31aff4&pid=1-s2.0-S0167945724001179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724001179\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724001179","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过运动信息识别和理解他人的动作是适应社会的重要功能。神经系统疾病和运动障碍等情况会影响对生物运动的敏感性,从而凸显出感知和执行动作之间错综复杂的关系。我们的研究重点是评估儿童(包括发育正常的儿童和因脑室周围白质沉着症(PVL)而被诊断为脑瘫的儿童)辨别描绘的抓握小圆柱体和大立方体的能力。这项辨别任务包括观察一个点光源动画,该动画描述了一名演员从分配中心视角(观察他人)或自我中心视角(观察自己)抓取物体的过程。值得注意的是,无论从哪个角度看,PVL 患儿在这项任务中都表现出明显的特定障碍,表现为阈值增加了近 2 倍。在将这种障碍与形式或运动感知困难进行比较时,我们发现以自我为中心的生物运动与形式敏感性之间存在着很强的相关性。然而,运动和生物运动敏感性之间没有类似的相关性,这表明视觉系统而非视觉运动控制系统存在缺陷。这些发现有助于我们理解先天性脑损伤患者的运动和视觉处理之间错综复杂的相互作用,并揭示了视觉系统在先天性脑损伤患者中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impairment in understanding grasping movements in egocentric and allocentric perspectives in children with cerebral palsy due to periventricular leukomalacia
Recognizing and understanding the actions of others through motion information are vital functions for social adaptation. Conditions like neurological disorders and motor impairments can impact sensitivity to biological motion, highlighting the intricate relationship between perceiving and executing movements. Our study centred on assessing the ability of children, encompassing both those with typical development and those diagnosed with cerebral palsy due to periventricular leukomalacia (PVL), to discriminate between depicted grasping of a small cylinder and a large cube. This discrimination task involved observing a point-light animation depicting an actor grasping the object, presented from either an allocentric perspective (observing others) or an egocentric viewpoint (observing oneself). Notably, children with PVL exhibited a pronounced and specific impairment in this task, irrespective of the viewpoint, as evidenced by thresholds increasing by nearly a factor of two. When comparing this impairment to difficulties in form or motion perception, we identified a robust correlation between egocentric biological motion and form sensitivity. However, there was no similar correlation between motion and biological motion sensitivity, suggesting a deficit in the visual system rather than the visuo-motor control system. These findings contribute to our understanding of the intricate interplay between motor and visual processing in individuals with congenital brain lesions, shedding light on the significant involvement of the visual system in cases of PVL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Movement Science
Human Movement Science 医学-神经科学
CiteScore
3.80
自引率
4.80%
发文量
89
审稿时长
42 days
期刊介绍: Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome. These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."
期刊最新文献
Effects of freezing of gait on vertical ground reaction force in Parkinson's disease Synergy in motion: Exploring the similarity and variability of muscle synergy patterns in healthy individuals Concentric exercise-induced fatigue of the shoulder impairs proprioception but not motor control or performance in healthy young adults Influence of exercise-induced hamstrings fatigue on proprioceptive reweighting strategies and postural performance in bipedal stance in recreational athletes Domain-specific balance training reduces slip-related fall risk in young adults: A potential alternative to perturbation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1