潮汐钻孔诱发河床的动态响应分析和液化潜力评估

IF 2.7 3区 地球科学 Q1 ENGINEERING, MARINE Journal of Marine Science and Engineering Pub Date : 2024-09-18 DOI:10.3390/jmse12091668
Dongzi Pan, Ying Li
{"title":"潮汐钻孔诱发河床的动态响应分析和液化潜力评估","authors":"Dongzi Pan, Ying Li","doi":"10.3390/jmse12091668","DOIUrl":null,"url":null,"abstract":"Tidal bores, defined by sudden upstream surges of tidal water in estuaries, exert significant hydrodynamic forces on riverbeds, leading to complex sedimentary responses. This study examines the dynamic response and liquefaction potential of riverbeds subjected to tidal bores in macro-tidal estuaries. An analytical model, developed using the generalized Biot theory and integral transform methods, evaluates the dynamic behavior of riverbed sediments. Key factors such as permeability, saturation, and sediment properties are analyzed for their influence on momentary liquefaction. The results indicate that fine sand reduces liquefaction risk by facilitating pore water discharge, while silt soil increases sediment instability. Additionally, the study reveals that pressure gradients induced by tidal bores can trigger momentary liquefaction, with the maximum liquefaction depth predicted based on horizontal pressure gradients being five times that predicted based on vertical pressure gradients. This research highlights the critical role of sediment characteristics in riverbed stability, providing a comprehensive understanding of the interactions between tidal bores and riverbed dynamics. The findings contribute to the development of predictive models and guidelines for managing the risks of tidal bore-induced liquefaction in coastal and estuarine environments.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore\",\"authors\":\"Dongzi Pan, Ying Li\",\"doi\":\"10.3390/jmse12091668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tidal bores, defined by sudden upstream surges of tidal water in estuaries, exert significant hydrodynamic forces on riverbeds, leading to complex sedimentary responses. This study examines the dynamic response and liquefaction potential of riverbeds subjected to tidal bores in macro-tidal estuaries. An analytical model, developed using the generalized Biot theory and integral transform methods, evaluates the dynamic behavior of riverbed sediments. Key factors such as permeability, saturation, and sediment properties are analyzed for their influence on momentary liquefaction. The results indicate that fine sand reduces liquefaction risk by facilitating pore water discharge, while silt soil increases sediment instability. Additionally, the study reveals that pressure gradients induced by tidal bores can trigger momentary liquefaction, with the maximum liquefaction depth predicted based on horizontal pressure gradients being five times that predicted based on vertical pressure gradients. This research highlights the critical role of sediment characteristics in riverbed stability, providing a comprehensive understanding of the interactions between tidal bores and riverbed dynamics. The findings contribute to the development of predictive models and guidelines for managing the risks of tidal bore-induced liquefaction in coastal and estuarine environments.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091668\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091668","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

潮汐淤积是指河口潮水突然向上游涌入,对河床产生巨大的水动力,导致复杂的沉积反应。本研究探讨了大潮汐河口潮汐渠对河床的动态响应和液化潜力。利用广义毕奥理论和积分变换方法建立的分析模型对河床沉积物的动态行为进行了评估。分析了渗透性、饱和度和沉积物特性等关键因素对瞬间液化的影响。研究结果表明,细砂可通过促进孔隙水排放来降低液化风险,而粉砂土则会增加沉积物的不稳定性。此外,研究还揭示了潮汐钻孔引起的压力梯度可引发瞬时液化,根据水平压力梯度预测的最大液化深度是根据垂直压力梯度预测的五倍。这项研究强调了沉积物特征在河床稳定性中的关键作用,为潮汐渠与河床动力学之间的相互作用提供了全面的认识。研究结果有助于开发预测模型和制定指导方针,以管理沿海和河口环境中由潮汐孔引起的液化风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore
Tidal bores, defined by sudden upstream surges of tidal water in estuaries, exert significant hydrodynamic forces on riverbeds, leading to complex sedimentary responses. This study examines the dynamic response and liquefaction potential of riverbeds subjected to tidal bores in macro-tidal estuaries. An analytical model, developed using the generalized Biot theory and integral transform methods, evaluates the dynamic behavior of riverbed sediments. Key factors such as permeability, saturation, and sediment properties are analyzed for their influence on momentary liquefaction. The results indicate that fine sand reduces liquefaction risk by facilitating pore water discharge, while silt soil increases sediment instability. Additionally, the study reveals that pressure gradients induced by tidal bores can trigger momentary liquefaction, with the maximum liquefaction depth predicted based on horizontal pressure gradients being five times that predicted based on vertical pressure gradients. This research highlights the critical role of sediment characteristics in riverbed stability, providing a comprehensive understanding of the interactions between tidal bores and riverbed dynamics. The findings contribute to the development of predictive models and guidelines for managing the risks of tidal bore-induced liquefaction in coastal and estuarine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Science and Engineering
Journal of Marine Science and Engineering Engineering-Ocean Engineering
CiteScore
4.40
自引率
20.70%
发文量
1640
审稿时长
18.09 days
期刊介绍: Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network Uncertainty of Wave Spectral Shape and Parameters Associated with the Spectral Estimation Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore Thermodynamic Analysis of a Marine Diesel Engine Waste Heat-Assisted Cogeneration Power Plant Modified with Regeneration Onboard a Ship Performance of a Cable-Driven Robot Used for Cyber–Physical Testing of Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1