{"title":"船用柴油机废热辅助热电联产发电厂的热力学分析","authors":"Haydar Kepekci, Cuneyt Ezgi","doi":"10.3390/jmse12091667","DOIUrl":null,"url":null,"abstract":"The objective of this study is to perform a thermodynamic analysis on a marine diesel engine waste heat-assisted cogeneration power plant modified with regeneration onboard a ship. The proposed system utilizes the waste heat from the main engine jacket water and exhaust gases to generate electricity and heat, thereby reducing the fuel consumption and CO2 emissions. The methodology includes varying different turbine inlet pressures, extraction pressures, and fractions of steam extracted from the turbine to evaluate their effects on the efficiency, utilization factor, transformation energy equivalent factor, process heat rate, electrical power output, saved fuel flow rate, saved fuel cost, and reduced CO2 emissions. The analysis demonstrates that the proposed system can achieve an efficiency of 48.18% and utilization factor of 86.36%, savings of up to 57.325 kg/h in fuel, 65.606 USD/h in fuel costs, and 180.576 kg/h in CO2 emissions per unit mass flow rate through a steam turbine onboard a ship.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"14 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Analysis of a Marine Diesel Engine Waste Heat-Assisted Cogeneration Power Plant Modified with Regeneration Onboard a Ship\",\"authors\":\"Haydar Kepekci, Cuneyt Ezgi\",\"doi\":\"10.3390/jmse12091667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to perform a thermodynamic analysis on a marine diesel engine waste heat-assisted cogeneration power plant modified with regeneration onboard a ship. The proposed system utilizes the waste heat from the main engine jacket water and exhaust gases to generate electricity and heat, thereby reducing the fuel consumption and CO2 emissions. The methodology includes varying different turbine inlet pressures, extraction pressures, and fractions of steam extracted from the turbine to evaluate their effects on the efficiency, utilization factor, transformation energy equivalent factor, process heat rate, electrical power output, saved fuel flow rate, saved fuel cost, and reduced CO2 emissions. The analysis demonstrates that the proposed system can achieve an efficiency of 48.18% and utilization factor of 86.36%, savings of up to 57.325 kg/h in fuel, 65.606 USD/h in fuel costs, and 180.576 kg/h in CO2 emissions per unit mass flow rate through a steam turbine onboard a ship.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091667\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091667","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Thermodynamic Analysis of a Marine Diesel Engine Waste Heat-Assisted Cogeneration Power Plant Modified with Regeneration Onboard a Ship
The objective of this study is to perform a thermodynamic analysis on a marine diesel engine waste heat-assisted cogeneration power plant modified with regeneration onboard a ship. The proposed system utilizes the waste heat from the main engine jacket water and exhaust gases to generate electricity and heat, thereby reducing the fuel consumption and CO2 emissions. The methodology includes varying different turbine inlet pressures, extraction pressures, and fractions of steam extracted from the turbine to evaluate their effects on the efficiency, utilization factor, transformation energy equivalent factor, process heat rate, electrical power output, saved fuel flow rate, saved fuel cost, and reduced CO2 emissions. The analysis demonstrates that the proposed system can achieve an efficiency of 48.18% and utilization factor of 86.36%, savings of up to 57.325 kg/h in fuel, 65.606 USD/h in fuel costs, and 180.576 kg/h in CO2 emissions per unit mass flow rate through a steam turbine onboard a ship.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.