美国的煤灰资源和稀土元素生产潜力

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Science & Technology Pub Date : 2024-09-17 DOI:10.1007/s40789-024-00710-z
Robert C. Reedy, Bridget R. Scanlon, Davin A. Bagdonas, James C. Hower, Dennis James, J. Richard Kyle, Kristine Uhlman
{"title":"美国的煤灰资源和稀土元素生产潜力","authors":"Robert C. Reedy, Bridget R. Scanlon, Davin A. Bagdonas, James C. Hower, Dennis James, J. Richard Kyle, Kristine Uhlman","doi":"10.1007/s40789-024-00710-z","DOIUrl":null,"url":null,"abstract":"<p>The renewable energy industry is heavily reliant on rare earth elements, underscoring the need to develop resources and production. The objective of this work was to estimate coal ash resources and potential for extraction of rare earth elements using data for the US. Data on spatiotemporal variability in coal ash resources and disposition were compiled from various federal databases and rare earth elements levels in ash were compiled from the literature. Results show that ~ 52 gigatons (Gt) of coal were produced in the US (1950–2021). Power plants account for most of the coal use, particularly since 1980. Coal ash (5.3 Gt) represents a mean of 10% of coal by weight, ranging from 6% for subbituminous to 14% for lignite. About 70% of coal ash is potentially accessible for rare earth element extraction (1985–2021) and was disposed in landfills and ponds with the remaining coal ash used onsite or sold. Median values of total rare earth elements are much higher in ashes derived from the Appalachian Basin (median 431 mg/kg) than in the Illinois (282 mg/kg) or Powder River basins (264 mg/kg). Considering the market value of rare earth oxides, potentially accessible ash volumes, and percent rare earth element extraction (30% Appalachian and Illinois Basins; 70% Powder River Basin) results in an estimated $8.4 billion value. This study provides fundamental information on accessible coal ash resources in the US, linkages to coal sources, and preliminary estimates of rare earth element levels for future development within the US.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"18 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coal ash resources and potential for rare earth element production in the United States\",\"authors\":\"Robert C. Reedy, Bridget R. Scanlon, Davin A. Bagdonas, James C. Hower, Dennis James, J. Richard Kyle, Kristine Uhlman\",\"doi\":\"10.1007/s40789-024-00710-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The renewable energy industry is heavily reliant on rare earth elements, underscoring the need to develop resources and production. The objective of this work was to estimate coal ash resources and potential for extraction of rare earth elements using data for the US. Data on spatiotemporal variability in coal ash resources and disposition were compiled from various federal databases and rare earth elements levels in ash were compiled from the literature. Results show that ~ 52 gigatons (Gt) of coal were produced in the US (1950–2021). Power plants account for most of the coal use, particularly since 1980. Coal ash (5.3 Gt) represents a mean of 10% of coal by weight, ranging from 6% for subbituminous to 14% for lignite. About 70% of coal ash is potentially accessible for rare earth element extraction (1985–2021) and was disposed in landfills and ponds with the remaining coal ash used onsite or sold. Median values of total rare earth elements are much higher in ashes derived from the Appalachian Basin (median 431 mg/kg) than in the Illinois (282 mg/kg) or Powder River basins (264 mg/kg). Considering the market value of rare earth oxides, potentially accessible ash volumes, and percent rare earth element extraction (30% Appalachian and Illinois Basins; 70% Powder River Basin) results in an estimated $8.4 billion value. This study provides fundamental information on accessible coal ash resources in the US, linkages to coal sources, and preliminary estimates of rare earth element levels for future development within the US.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00710-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00710-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源产业严重依赖稀土元素,因此需要开发资源和生产稀土元素。这项工作的目的是利用美国的数据估算煤灰资源和提取稀土元素的潜力。煤灰资源和处置的时空变化数据来自各种联邦数据库,煤灰中的稀土元素含量则来自文献。结果显示,美国(1950-2021 年)的煤炭产量约为 52 千兆吨 (Gt)。发电厂占煤炭使用量的大部分,特别是自 1980 年以来。煤灰(5.3 千兆吨)平均占煤炭重量的 10%,从亚烟煤的 6% 到褐煤的 14% 不等。约 70% 的煤灰可用于提取稀土元素(1985-2021 年),这些煤灰被丢弃在垃圾填埋场和池塘中,其余的煤灰在现场使用或出售。阿巴拉契亚盆地煤灰中稀土元素总量的中值(中值为 431 毫克/千克)远高于伊利诺斯盆地(282 毫克/千克)或粉河盆地(264 毫克/千克)。考虑到稀土氧化物的市场价值、可能获取的煤灰量以及稀土元素提取率(阿巴拉契亚盆地和伊利诺斯盆地占 30%;粉河盆地占 70%),估计价值为 84 亿美元。本研究提供了有关美国可获得的煤灰资源、与煤炭来源的联系以及美国未来开发的稀土元素含量初步估算的基本信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coal ash resources and potential for rare earth element production in the United States

The renewable energy industry is heavily reliant on rare earth elements, underscoring the need to develop resources and production. The objective of this work was to estimate coal ash resources and potential for extraction of rare earth elements using data for the US. Data on spatiotemporal variability in coal ash resources and disposition were compiled from various federal databases and rare earth elements levels in ash were compiled from the literature. Results show that ~ 52 gigatons (Gt) of coal were produced in the US (1950–2021). Power plants account for most of the coal use, particularly since 1980. Coal ash (5.3 Gt) represents a mean of 10% of coal by weight, ranging from 6% for subbituminous to 14% for lignite. About 70% of coal ash is potentially accessible for rare earth element extraction (1985–2021) and was disposed in landfills and ponds with the remaining coal ash used onsite or sold. Median values of total rare earth elements are much higher in ashes derived from the Appalachian Basin (median 431 mg/kg) than in the Illinois (282 mg/kg) or Powder River basins (264 mg/kg). Considering the market value of rare earth oxides, potentially accessible ash volumes, and percent rare earth element extraction (30% Appalachian and Illinois Basins; 70% Powder River Basin) results in an estimated $8.4 billion value. This study provides fundamental information on accessible coal ash resources in the US, linkages to coal sources, and preliminary estimates of rare earth element levels for future development within the US.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
期刊最新文献
Coal ash resources and potential for rare earth element production in the United States Ecological environment quality assessment of coal mining cities based on GEE platform: A case study of Shuozhou, China Study on signal characteristics of burst tendency coal under different loading rates Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1