空间相关信道上多播大规模 MIMO 的用户分组和功率控制

Alejandro de la Fuente, Giovanni Interdonato, Giuseppe Araniti
{"title":"空间相关信道上多播大规模 MIMO 的用户分组和功率控制","authors":"Alejandro de la Fuente, Giovanni Interdonato, Giuseppe Araniti","doi":"arxiv-2409.11891","DOIUrl":null,"url":null,"abstract":"Massive multiple-input-multiple-output (MIMO) is unquestionably a key enabler\nof the fifth-generation (5G) technology for mobile systems, enabling to meet\nthe high requirements of upcoming mobile broadband services. Physical-layer\nmulticasting refers to a technique for simultaneously serving multiple users,\ndemanding for the same service and sharing the same radio resources, with a\nsingle transmission. Massive MIMO systems with multicast communications have\nbeen so far studied under the ideal assumption of uncorrelated Rayleigh fading\nchannels. In this work, we consider a practical multicast massive MIMO system\nover spatially correlated Rayleigh fading channels, investigating the impact of\nthe spatial channel correlation on the favorable propagation, hence on the\nperformance. We propose a subgrouping strategy for the multicast users based on\ntheir channel correlation matrices' similarities. The proposed subgrouping\napproach capitalizes on the spatial correlation to enhance the quality of the\nchannel estimation, and thereby the effectiveness of the precoding. Moreover,\nwe devise a max-min fairness (MMF) power allocation strategy that makes the\nspectral efficiency (SE) among different multicast subgroups uniform. Lastly,\nwe propose a novel power allocation for uplink (UL) pilot transmission to\nmaximize the SE among the users within the same multicast subgroup. Simulation\nresults show a significant SE gain provided by our user subgrouping and power\nallocation strategies. Importantly, we show how spatial channel correlation can\nbe exploited to enhance multicast massive MIMO communications.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User Subgrouping and Power Control for Multicast Massive MIMO over Spatially Correlated Channels\",\"authors\":\"Alejandro de la Fuente, Giovanni Interdonato, Giuseppe Araniti\",\"doi\":\"arxiv-2409.11891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple-input-multiple-output (MIMO) is unquestionably a key enabler\\nof the fifth-generation (5G) technology for mobile systems, enabling to meet\\nthe high requirements of upcoming mobile broadband services. Physical-layer\\nmulticasting refers to a technique for simultaneously serving multiple users,\\ndemanding for the same service and sharing the same radio resources, with a\\nsingle transmission. Massive MIMO systems with multicast communications have\\nbeen so far studied under the ideal assumption of uncorrelated Rayleigh fading\\nchannels. In this work, we consider a practical multicast massive MIMO system\\nover spatially correlated Rayleigh fading channels, investigating the impact of\\nthe spatial channel correlation on the favorable propagation, hence on the\\nperformance. We propose a subgrouping strategy for the multicast users based on\\ntheir channel correlation matrices' similarities. The proposed subgrouping\\napproach capitalizes on the spatial correlation to enhance the quality of the\\nchannel estimation, and thereby the effectiveness of the precoding. Moreover,\\nwe devise a max-min fairness (MMF) power allocation strategy that makes the\\nspectral efficiency (SE) among different multicast subgroups uniform. Lastly,\\nwe propose a novel power allocation for uplink (UL) pilot transmission to\\nmaximize the SE among the users within the same multicast subgroup. Simulation\\nresults show a significant SE gain provided by our user subgrouping and power\\nallocation strategies. Importantly, we show how spatial channel correlation can\\nbe exploited to enhance multicast massive MIMO communications.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模多输入多输出(MIMO)无疑是第五代(5G)移动系统技术的关键推动因素,能够满足即将到来的移动宽带服务的高要求。物理层多播指的是通过一次传输同时为多个用户提供服务的技术,这些用户需要相同的服务并共享相同的无线电资源。带组播通信的大规模多输入多输出系统迄今一直是在不相关的瑞利衰减信道的理想假设下进行研究的。在这项工作中,我们考虑了在空间相关的瑞利衰减信道上的实用多播大规模 MIMO 系统,研究了空间信道相关性对有利传播的影响,从而对性能的影响。我们提出了一种基于信道相关矩阵相似性的多播用户分组策略。建议的分组方法利用空间相关性来提高信道估计的质量,从而提高预编码的有效性。此外,我们还设计了一种最大最小公平(MMF)功率分配策略,使不同组播子组之间的光谱效率(SE)保持一致。最后,我们为上行链路(UL)先导传输提出了一种新的功率分配方案,以最大限度地提高同一组播子组内用户之间的光谱效率(SE)。仿真结果表明,我们的用户分组和功率分配策略带来了显著的 SE 增益。重要的是,我们展示了如何利用空间信道相关性来增强组播大规模 MIMO 通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User Subgrouping and Power Control for Multicast Massive MIMO over Spatially Correlated Channels
Massive multiple-input-multiple-output (MIMO) is unquestionably a key enabler of the fifth-generation (5G) technology for mobile systems, enabling to meet the high requirements of upcoming mobile broadband services. Physical-layer multicasting refers to a technique for simultaneously serving multiple users, demanding for the same service and sharing the same radio resources, with a single transmission. Massive MIMO systems with multicast communications have been so far studied under the ideal assumption of uncorrelated Rayleigh fading channels. In this work, we consider a practical multicast massive MIMO system over spatially correlated Rayleigh fading channels, investigating the impact of the spatial channel correlation on the favorable propagation, hence on the performance. We propose a subgrouping strategy for the multicast users based on their channel correlation matrices' similarities. The proposed subgrouping approach capitalizes on the spatial correlation to enhance the quality of the channel estimation, and thereby the effectiveness of the precoding. Moreover, we devise a max-min fairness (MMF) power allocation strategy that makes the spectral efficiency (SE) among different multicast subgroups uniform. Lastly, we propose a novel power allocation for uplink (UL) pilot transmission to maximize the SE among the users within the same multicast subgroup. Simulation results show a significant SE gain provided by our user subgrouping and power allocation strategies. Importantly, we show how spatial channel correlation can be exploited to enhance multicast massive MIMO communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1