脑电图源定位中的源方向检测 (AORI) 和时空 LCMV (ALCMV) 波束成形加速算法

Ava Yektaeian Vaziri, Bahador Makkiabadi
{"title":"脑电图源定位中的源方向检测 (AORI) 和时空 LCMV (ALCMV) 波束成形加速算法","authors":"Ava Yektaeian Vaziri, Bahador Makkiabadi","doi":"arxiv-2409.11751","DOIUrl":null,"url":null,"abstract":"This paper illustrates the development of two efficient source localization\nalgorithms for electroencephalography (EEG) data, aimed at enhancing real-time\nbrain signal reconstruction while addressing the computational challenges of\ntraditional methods. Accurate EEG source localization is crucial for\napplications in cognitive neuroscience, neurorehabilitation, and brain-computer\ninterfaces (BCIs). To make significant progress toward precise source\norientation detection and improved signal reconstruction, we introduce the\nAccelerated Linear Constrained Minimum Variance (ALCMV) beamforming toolbox and\nthe Accelerated Brain Source Orientation Detection (AORI) toolbox. The ALCMV\nalgorithm speeds up EEG source reconstruction by utilizing recursive covariance\nmatrix calculations, while AORI simplifies source orientation detection from\nthree dimensions to one, reducing computational load by 66% compared to\nconventional methods. Using both simulated and real EEG data, we demonstrate\nthat these algorithms maintain high accuracy, with orientation errors below\n0.2% and signal reconstruction accuracy within 2%. These findings suggest that\nthe proposed toolboxes represent a substantial advancement in the efficiency\nand speed of EEG source localization, making them well-suited for real-time\nneurotechnological applications.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Algorithms for Source Orientation Detection (AORI) and Spatiotemporal LCMV (ALCMV) Beamforming in EEG Source Localization\",\"authors\":\"Ava Yektaeian Vaziri, Bahador Makkiabadi\",\"doi\":\"arxiv-2409.11751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the development of two efficient source localization\\nalgorithms for electroencephalography (EEG) data, aimed at enhancing real-time\\nbrain signal reconstruction while addressing the computational challenges of\\ntraditional methods. Accurate EEG source localization is crucial for\\napplications in cognitive neuroscience, neurorehabilitation, and brain-computer\\ninterfaces (BCIs). To make significant progress toward precise source\\norientation detection and improved signal reconstruction, we introduce the\\nAccelerated Linear Constrained Minimum Variance (ALCMV) beamforming toolbox and\\nthe Accelerated Brain Source Orientation Detection (AORI) toolbox. The ALCMV\\nalgorithm speeds up EEG source reconstruction by utilizing recursive covariance\\nmatrix calculations, while AORI simplifies source orientation detection from\\nthree dimensions to one, reducing computational load by 66% compared to\\nconventional methods. Using both simulated and real EEG data, we demonstrate\\nthat these algorithms maintain high accuracy, with orientation errors below\\n0.2% and signal reconstruction accuracy within 2%. These findings suggest that\\nthe proposed toolboxes represent a substantial advancement in the efficiency\\nand speed of EEG source localization, making them well-suited for real-time\\nneurotechnological applications.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文阐述了针对脑电图(EEG)数据开发的两种高效源定位算法,旨在增强实时脑信号重建,同时解决传统方法在计算方面的难题。精确的脑电图信号源定位对于认知神经科学、神经康复和脑机接口(BCI)等应用至关重要。为了在精确信号源定位检测和改进信号重建方面取得重大进展,我们推出了加速线性约束最小方差(ALCMV)波束成形工具箱和加速脑信号源定位检测(AORI)工具箱。ALCMV 算法利用递归协方差矩阵计算加快了脑电图信号源重建速度,而 AORI 则将信号源方向检测从三维简化为一维,与传统方法相比减少了 66% 的计算负荷。利用模拟和真实脑电图数据,我们证明了这些算法保持了很高的精度,方向误差低于 0.2%,信号重建精度在 2% 以内。这些发现表明,所提出的工具箱大大提高了脑电图信号源定位的效率和速度,非常适合实际神经技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated Algorithms for Source Orientation Detection (AORI) and Spatiotemporal LCMV (ALCMV) Beamforming in EEG Source Localization
This paper illustrates the development of two efficient source localization algorithms for electroencephalography (EEG) data, aimed at enhancing real-time brain signal reconstruction while addressing the computational challenges of traditional methods. Accurate EEG source localization is crucial for applications in cognitive neuroscience, neurorehabilitation, and brain-computer interfaces (BCIs). To make significant progress toward precise source orientation detection and improved signal reconstruction, we introduce the Accelerated Linear Constrained Minimum Variance (ALCMV) beamforming toolbox and the Accelerated Brain Source Orientation Detection (AORI) toolbox. The ALCMV algorithm speeds up EEG source reconstruction by utilizing recursive covariance matrix calculations, while AORI simplifies source orientation detection from three dimensions to one, reducing computational load by 66% compared to conventional methods. Using both simulated and real EEG data, we demonstrate that these algorithms maintain high accuracy, with orientation errors below 0.2% and signal reconstruction accuracy within 2%. These findings suggest that the proposed toolboxes represent a substantial advancement in the efficiency and speed of EEG source localization, making them well-suited for real-time neurotechnological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1