基于图的信号采样与自适应子空间重构,用于空间不规则传感器数据

Darukeesan Pakiyarajah, Eduardo Pavez, Antonio Ortega
{"title":"基于图的信号采样与自适应子空间重构,用于空间不规则传感器数据","authors":"Darukeesan Pakiyarajah, Eduardo Pavez, Antonio Ortega","doi":"arxiv-2409.09526","DOIUrl":null,"url":null,"abstract":"Choosing an appropriate frequency definition and norm is critical in graph\nsignal sampling and reconstruction. Most previous works define frequencies\nbased on the spectral properties of the graph and use the same frequency\ndefinition and $\\ell_2$-norm for optimization for all sampling sets. Our\nprevious work demonstrated that using a sampling set-adaptive norm and\nfrequency definition can address challenges in classical bandlimited\napproximation, particularly with model mismatches and irregularly distributed\ndata. In this work, we propose a method for selecting sampling sets tailored to\nthe sampling set adaptive GFT-based interpolation. When the graph models the\ninverse covariance of the data, we show that this adaptive GFT enables\nlocalizing the bandlimited model mismatch error to high frequencies, and the\nspectral folding property allows us to track this error in reconstruction.\nBased on this, we propose a sampling set selection algorithm to minimize the\nworst-case bandlimited model mismatch error. We consider partitioning the\nsensors in a sensor network sampling a continuous spatial process as an\napplication. Our experiments show that sampling and reconstruction using\nsampling set adaptive GFT significantly outperform methods that used fixed GFTs\nand bandwidth-based criterion.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Based Signal Sampling with Adaptive Subspace Reconstruction for Spatially-Irregular Sensor Data\",\"authors\":\"Darukeesan Pakiyarajah, Eduardo Pavez, Antonio Ortega\",\"doi\":\"arxiv-2409.09526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Choosing an appropriate frequency definition and norm is critical in graph\\nsignal sampling and reconstruction. Most previous works define frequencies\\nbased on the spectral properties of the graph and use the same frequency\\ndefinition and $\\\\ell_2$-norm for optimization for all sampling sets. Our\\nprevious work demonstrated that using a sampling set-adaptive norm and\\nfrequency definition can address challenges in classical bandlimited\\napproximation, particularly with model mismatches and irregularly distributed\\ndata. In this work, we propose a method for selecting sampling sets tailored to\\nthe sampling set adaptive GFT-based interpolation. When the graph models the\\ninverse covariance of the data, we show that this adaptive GFT enables\\nlocalizing the bandlimited model mismatch error to high frequencies, and the\\nspectral folding property allows us to track this error in reconstruction.\\nBased on this, we propose a sampling set selection algorithm to minimize the\\nworst-case bandlimited model mismatch error. We consider partitioning the\\nsensors in a sensor network sampling a continuous spatial process as an\\napplication. Our experiments show that sampling and reconstruction using\\nsampling set adaptive GFT significantly outperform methods that used fixed GFTs\\nand bandwidth-based criterion.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在图形信号采样和重建中,选择合适的频率定义和规范至关重要。之前的大多数工作都是根据图的频谱特性定义频率,并使用相同的频率定义和 $\ell_2$ 准则对所有采样集进行优化。我们之前的工作表明,使用采样集自适应规范和频率定义可以解决经典带限逼近中的难题,尤其是在模型不匹配和数据不规则分布的情况下。在这项工作中,我们提出了一种为基于 GFT 的采样集自适应插值量身定制的采样集选择方法。当图形对数据的逆协方差进行建模时,我们发现这种自适应 GFT 能够将带限模型失配误差定位到高频率,而光谱折叠特性允许我们在重建中跟踪这种误差。我们将传感器网络中对连续空间过程进行采样的传感器分区视为一种应用。实验表明,使用采样集自适应 GFT 进行采样和重建的效果明显优于使用固定 GFT 和基于带宽准则的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-Based Signal Sampling with Adaptive Subspace Reconstruction for Spatially-Irregular Sensor Data
Choosing an appropriate frequency definition and norm is critical in graph signal sampling and reconstruction. Most previous works define frequencies based on the spectral properties of the graph and use the same frequency definition and $\ell_2$-norm for optimization for all sampling sets. Our previous work demonstrated that using a sampling set-adaptive norm and frequency definition can address challenges in classical bandlimited approximation, particularly with model mismatches and irregularly distributed data. In this work, we propose a method for selecting sampling sets tailored to the sampling set adaptive GFT-based interpolation. When the graph models the inverse covariance of the data, we show that this adaptive GFT enables localizing the bandlimited model mismatch error to high frequencies, and the spectral folding property allows us to track this error in reconstruction. Based on this, we propose a sampling set selection algorithm to minimize the worst-case bandlimited model mismatch error. We consider partitioning the sensors in a sensor network sampling a continuous spatial process as an application. Our experiments show that sampling and reconstruction using sampling set adaptive GFT significantly outperform methods that used fixed GFTs and bandwidth-based criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1