{"title":"基于原子规范最小化的 IRS 辅助传感系统 DoA 估计","authors":"Renwang Li, Shu Sun, Meixia Tao","doi":"arxiv-2409.09982","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) is expected to play a pivotal role in\nfuture wireless sensing networks owing to its potential for high-resolution and\nhigh-accuracy sensing. In this work, we investigate a multi-target\ndirection-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted\nsensing system, where IRS reflecting elements (REs) reflect signals from the\nbase station to targets, and IRS sensing elements (SEs) estimate DoA based on\necho signals reflected by the targets. {First of all, instead of solely relying\non IRS SEs for DoA estimation as done in the existing literature, this work\nfully exploits the DoA information embedded in both IRS REs and SEs matrices\nvia the atomic norm minimization (ANM) scheme. Subsequently, the Cram\\'er-Rao\nbound for DoA estimation is derived, revealing an inverse proportionality to\n$MN^3+NM^3$ under the case of identity covariance matrix of the IRS measurement\nmatrix and a single target, where $M$ and $N$ are the number of IRS SEs and\nREs, respectively. Finally, extensive numerical results substantiate the\nsuperior accuracy and resolution performance of the proposed ANM-based DoA\nestimation method over representative baselines.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Norm Minimization-based DoA Estimation for IRS-assisted Sensing Systems\",\"authors\":\"Renwang Li, Shu Sun, Meixia Tao\",\"doi\":\"arxiv-2409.09982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent reflecting surface (IRS) is expected to play a pivotal role in\\nfuture wireless sensing networks owing to its potential for high-resolution and\\nhigh-accuracy sensing. In this work, we investigate a multi-target\\ndirection-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted\\nsensing system, where IRS reflecting elements (REs) reflect signals from the\\nbase station to targets, and IRS sensing elements (SEs) estimate DoA based on\\necho signals reflected by the targets. {First of all, instead of solely relying\\non IRS SEs for DoA estimation as done in the existing literature, this work\\nfully exploits the DoA information embedded in both IRS REs and SEs matrices\\nvia the atomic norm minimization (ANM) scheme. Subsequently, the Cram\\\\'er-Rao\\nbound for DoA estimation is derived, revealing an inverse proportionality to\\n$MN^3+NM^3$ under the case of identity covariance matrix of the IRS measurement\\nmatrix and a single target, where $M$ and $N$ are the number of IRS SEs and\\nREs, respectively. Finally, extensive numerical results substantiate the\\nsuperior accuracy and resolution performance of the proposed ANM-based DoA\\nestimation method over representative baselines.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
智能反射面(IRS)具有高分辨率和高精度传感的潜力,因此有望在未来的无线传感网络中发挥关键作用。在这项工作中,我们研究了半被动 IRS 辅助传感系统中的多目标到达方向(DoA)估计问题,其中 IRS 反射元件(RE)将信号从基站反射到目标,IRS 传感元件(SE)根据目标反射的信号估计 DoA。{首先,这项工作并不像现有文献那样仅仅依靠 IRS SEs 来估计 DoA,而是通过原子规范最小化(ANM)方案,有效地利用了嵌入在 IRS REs 和 SEs 矩阵中的 DoA 信息。随后,推导出了 DoA 估计的 Cram\'er-Raobound ,揭示了在 IRS 测量矩阵的同方差矩阵和单一目标的情况下,与 $MN^3+NM^3$ 的反比例关系,其中 $M$ 和 $N$ 分别是 IRS SE 和 RE 的数量。最后,大量的数值结果证明了基于 ANM 的 DoAestimation 方法比有代表性的基线方法具有更高的精度和分辨率。
Atomic Norm Minimization-based DoA Estimation for IRS-assisted Sensing Systems
Intelligent reflecting surface (IRS) is expected to play a pivotal role in
future wireless sensing networks owing to its potential for high-resolution and
high-accuracy sensing. In this work, we investigate a multi-target
direction-of-arrival (DoA) estimation problem in a semi-passive IRS-assisted
sensing system, where IRS reflecting elements (REs) reflect signals from the
base station to targets, and IRS sensing elements (SEs) estimate DoA based on
echo signals reflected by the targets. {First of all, instead of solely relying
on IRS SEs for DoA estimation as done in the existing literature, this work
fully exploits the DoA information embedded in both IRS REs and SEs matrices
via the atomic norm minimization (ANM) scheme. Subsequently, the Cram\'er-Rao
bound for DoA estimation is derived, revealing an inverse proportionality to
$MN^3+NM^3$ under the case of identity covariance matrix of the IRS measurement
matrix and a single target, where $M$ and $N$ are the number of IRS SEs and
REs, respectively. Finally, extensive numerical results substantiate the
superior accuracy and resolution performance of the proposed ANM-based DoA
estimation method over representative baselines.