基于符号级预编码的 ISAC 系统自干扰消除

Shu Cai, Zihao Chen, Ya-Feng Liu, Jun Zhang
{"title":"基于符号级预编码的 ISAC 系统自干扰消除","authors":"Shu Cai, Zihao Chen, Ya-Feng Liu, Jun Zhang","doi":"arxiv-2409.08608","DOIUrl":null,"url":null,"abstract":"Consider an integrated sensing and communication (ISAC) system where a base\nstation (BS) employs a full-duplex radio to simultaneously serve multiple users\nand detect a target. The detection performance of the BS may be compromised by\nself-interference (SI) leakage. This paper investigates the feasibility of SI\ncancellation (SIC) through the application of symbol-level precoding (SLP). We\nfirst derive the target detection probability in the presence of the SI. We\nthen formulate an SLP-based SIC problem, which optimizes the target detection\nprobability while satisfying the quality of service requirements of all users.\nThe formulated problem is a nonconvex fractional programming (FP) problem with\na large number of equality and inequality constraints. We propose a\npenalty-based block coordinate descent (BCD) algorithm for solving the\nformulated problem, which allows for efficient closed-form updates of each\nblock of variables at each iteration. Finally, numerical simulation results are\npresented to showcase the enhanced detection performance of the proposed SIC\napproach.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbol-Level Precoding-Based Self-Interference Cancellation for ISAC Systems\",\"authors\":\"Shu Cai, Zihao Chen, Ya-Feng Liu, Jun Zhang\",\"doi\":\"arxiv-2409.08608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider an integrated sensing and communication (ISAC) system where a base\\nstation (BS) employs a full-duplex radio to simultaneously serve multiple users\\nand detect a target. The detection performance of the BS may be compromised by\\nself-interference (SI) leakage. This paper investigates the feasibility of SI\\ncancellation (SIC) through the application of symbol-level precoding (SLP). We\\nfirst derive the target detection probability in the presence of the SI. We\\nthen formulate an SLP-based SIC problem, which optimizes the target detection\\nprobability while satisfying the quality of service requirements of all users.\\nThe formulated problem is a nonconvex fractional programming (FP) problem with\\na large number of equality and inequality constraints. We propose a\\npenalty-based block coordinate descent (BCD) algorithm for solving the\\nformulated problem, which allows for efficient closed-form updates of each\\nblock of variables at each iteration. Finally, numerical simulation results are\\npresented to showcase the enhanced detection performance of the proposed SIC\\napproach.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个综合传感与通信(ISAC)系统,其中基站(BS)使用全双工无线电同时为多个用户提供服务并探测目标。基站的探测性能可能会受到自干扰(SI)泄漏的影响。本文研究了通过应用符号级预编码(SLP)来消除自干扰(SIC)的可行性。我们首先推导出存在 SI 时的目标检测概率。我们提出了一个基于 SLP 的 SIC 问题,该问题在满足所有用户服务质量要求的同时优化了目标检测概率。我们提出了一种基于忠诚度的块坐标下降 (BCD) 算法来解决所提出的问题,该算法允许在每次迭代时对每块变量进行高效的闭式更新。最后,我们给出了数值仿真结果,以展示所提出的 SIC 方法所增强的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symbol-Level Precoding-Based Self-Interference Cancellation for ISAC Systems
Consider an integrated sensing and communication (ISAC) system where a base station (BS) employs a full-duplex radio to simultaneously serve multiple users and detect a target. The detection performance of the BS may be compromised by self-interference (SI) leakage. This paper investigates the feasibility of SI cancellation (SIC) through the application of symbol-level precoding (SLP). We first derive the target detection probability in the presence of the SI. We then formulate an SLP-based SIC problem, which optimizes the target detection probability while satisfying the quality of service requirements of all users. The formulated problem is a nonconvex fractional programming (FP) problem with a large number of equality and inequality constraints. We propose a penalty-based block coordinate descent (BCD) algorithm for solving the formulated problem, which allows for efficient closed-form updates of each block of variables at each iteration. Finally, numerical simulation results are presented to showcase the enhanced detection performance of the proposed SIC approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1