噪声低等级列式传感

Ankit Pratap Singh, Namrata Vaswani
{"title":"噪声低等级列式传感","authors":"Ankit Pratap Singh, Namrata Vaswani","doi":"arxiv-2409.08384","DOIUrl":null,"url":null,"abstract":"This letter studies the AltGDmin algorithm for solving the noisy low rank\ncolumn-wise sensing (LRCS) problem. Our sample complexity guarantee improves\nupon the best existing one by a factor $\\max(r, \\log(1/\\epsilon))/r$ where $r$\nis the rank of the unknown matrix and $\\epsilon$ is the final desired accuracy.\nA second contribution of this work is a detailed comparison of guarantees from\nall work that studies the exact same mathematical problem as LRCS, but refers\nto it by different names.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noisy Low Rank Column-wise Sensing\",\"authors\":\"Ankit Pratap Singh, Namrata Vaswani\",\"doi\":\"arxiv-2409.08384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter studies the AltGDmin algorithm for solving the noisy low rank\\ncolumn-wise sensing (LRCS) problem. Our sample complexity guarantee improves\\nupon the best existing one by a factor $\\\\max(r, \\\\log(1/\\\\epsilon))/r$ where $r$\\nis the rank of the unknown matrix and $\\\\epsilon$ is the final desired accuracy.\\nA second contribution of this work is a detailed comparison of guarantees from\\nall work that studies the exact same mathematical problem as LRCS, but refers\\nto it by different names.\",\"PeriodicalId\":501034,\"journal\":{\"name\":\"arXiv - EE - Signal Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章研究了解决有噪声低秩列智传感(LRCS)问题的 AltGDmin 算法。我们的样本复杂度保证在现有最佳保证的基础上提高了一个因子 $\max(r,\log(1/\epsilon))/r$,其中 $r$ 是未知矩阵的秩,$\epsilon$ 是最终期望的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noisy Low Rank Column-wise Sensing
This letter studies the AltGDmin algorithm for solving the noisy low rank column-wise sensing (LRCS) problem. Our sample complexity guarantee improves upon the best existing one by a factor $\max(r, \log(1/\epsilon))/r$ where $r$ is the rank of the unknown matrix and $\epsilon$ is the final desired accuracy. A second contribution of this work is a detailed comparison of guarantees from all work that studies the exact same mathematical problem as LRCS, but refers to it by different names.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1