{"title":"耦合量子振荡器中的吸引-排斥相互作用","authors":"Bulti Paul, Biswabibek Bandyopadhyay, Tanmoy Banerjee","doi":"10.1103/physreve.110.034210","DOIUrl":null,"url":null,"abstract":"We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to a quantum inhomogeneous steady state. This transition is contrary to the previously known symmetry-breaking transition from a quantum homogeneous state to an inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analog in the classical domain. This study enriches our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractive-repulsive interaction in coupled quantum oscillators\",\"authors\":\"Bulti Paul, Biswabibek Bandyopadhyay, Tanmoy Banerjee\",\"doi\":\"10.1103/physreve.110.034210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to a quantum inhomogeneous steady state. This transition is contrary to the previously known symmetry-breaking transition from a quantum homogeneous state to an inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analog in the classical domain. This study enriches our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034210\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034210","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Attractive-repulsive interaction in coupled quantum oscillators
We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to a quantum inhomogeneous steady state. This transition is contrary to the previously known symmetry-breaking transition from a quantum homogeneous state to an inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analog in the classical domain. This study enriches our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.