Subhasish Chaki, Baicheng Mei, Kenneth S. Schweizer
{"title":"深层可蜕变硬球流体的结构、热力学和剪切弹性理论分析","authors":"Subhasish Chaki, Baicheng Mei, Kenneth S. Schweizer","doi":"10.1103/physreve.110.034606","DOIUrl":null,"url":null,"abstract":"The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids\",\"authors\":\"Subhasish Chaki, Baicheng Mei, Kenneth S. Schweizer\",\"doi\":\"10.1103/physreve.110.034606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034606\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034606","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids
The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.